A Note To Students

Math skills are vital in business, investing, and everyday life as a consumer. *Math for Business and Life* was written to provide these math skills. This *Student Solutions Manual* provides written solutions to all Chapter Review Problems and Practice Tests. Here are a few suggestions for using this manual:

- While the manual is a valuable study aid, don't compromise other elements for a successful course, such as attending class regularly, reading the text, and studying with other students.
- Don't use the manual as a crutch. Try to solve the problems without referring to this manual; you will learn more by struggling a bit, trying to define the problem. Compare your answer with that found in Appendix B of the text. If your answer is wrong, compare your solution with the solution in this manual.

Best wishes for a successful course, as well as success in your business and personal ventures.

TABLE OF CONTENTS

Chapter 1	Whole Numbers and Decimals	
Chapter 2	Fractions	
Chapter 3	Equations: A Guide to Finding the Unknown	
Chapter 4	Percents	
Chapter 5	Trade and Cash Discounts	
Chapter 6	Markup and Markdown	
Chapter 7	Checking Accounts	
Chapter 8	Payroll	
Chapter 9	Simple and Compound Interest	30
Chapter 10	Future Value and Present Value: Using Formulas	
Chapter 11	Sinking Funds, Annuities, and More: Using Formulas	39
Chapter 12	Future Value and Present Value: Using Financial Calculators	
Chapter 13	Sinking Funds, Annutites, and More: Using Financial Calculators	
Chapter 14	Installment Loans and Open-End Credit	50
Chapter 15	Home Ownership and Mortgage Loans	
Chapter 16	Stocks, Bonds, and Mutual Funds	
Chapter 17	Additional Applications Using Financial Calculators	61
Chapter 18	Financial Statements: How to Read and Interpret	
Chapter 19	Inventory and Overhead	
Chapter 20	Depreciation	
Chapter 21	Taxes: Income, Sales, and Property	
Chapter 22	Insurance	
Chapter 23	Measurements: Real-World Applications	80
Chapter 24	International Business: Exchange Rates and Metrics	
Chapter 25	Statistics: An Introduction	

Chapter I Whole Numbersand Decimials

Unit 1.1 Reading, writing, and rounding numbers

- 1. Four hundred twenty-eight
- 2. Eight million, two hundred fifty-seven thousand, one hundred sixteen
- 3. Seven and eight-tenths
- 4. Twelve and twelve ten-thousandths
- 5. 426,000
- 6. .426
- 7. 400.026
- 8. 14,726,111.2
- 9. 8.1 trillion \longrightarrow 8,1 \longrightarrow 8,100,000,000,000
- **10.** 76.1<u>2</u>506 \longrightarrow **76.13**
- **11.** 123,678,499 \longrightarrow **123,678,000**
- **12.** 23,46<u>7</u>.5000001 ---> **23,468**
- **13**. 45,951 —> 46,000

Unit 1.2 Working with whole numbers

14.

1 2
123
456
54
<u>+ 8</u>
641

15.

16.

17.

18.

19.

0 101611

20.

21.

$$\begin{array}{r}
 147 \\
 24)3528 \\
 \underline{24} \\
 112 \\
 \underline{96} \\
 168 \\
 \underline{168}
\end{array}$$

$$\begin{array}{c|c}
212 & R32 \\
41)8724 & \\
82 & \\
52 & \\
41 & \\
114 & \\
82 & \\
32 & \\
\end{array}$$

Unit 1.3 Strategy for solving word problems

27.

28. Your score:
$$4 + 5 + 3 + 4 + 7 + 6 + 4 + 2 + 5 = 40$$

Over par: 40 - 36 = 4

29.

96 <u>×3</u> 288 cans

30.

31.

	Rounded	
\$ 980	\$1,000	
425	400	
+ 310	+ 300	
	\$1.700	Thi

\$1,700 Think: 10 + 4 = 14; + 3 = 17

Unit 1.4 Working with decimal numbers

44.

100 4.68
$$\longrightarrow$$
 04.68 \longrightarrow .0468 2 zeros) 2 places left

- **48.** 22 acres + 105.643 acres + .92 acres = **128.563 acres**
- **49.** \$50 \$8.52 = **\$41.48**
- **50.** 322 sq ft \times \$9.50 per sq ft = \$3,059
- **51.** $18.5 \text{ lb} \times \$0.39 \text{ per lb} = \$7.215 = \$7.22 \text{ (rounded)}$
- **52.** 1,872.4 miles \times \$0.55 per mile = \$1,029.82
- **53.** 295.75 sq ft ÷ 3.5 sq ft per glove = 84.5 gloves = **84 full gloves**

Challenge problems

- **54.** 26,007.4 ending miles 23,578.9 beginning miles = **2,428.5 miles**
- **55.** To figure gallons used, we must start with a full tank and end with a full tank, ignoring gallons used in the initial fill-up: 14.6 gal + 17.4 gal + 11.7 gal + 15.6 gal + 17.1 gal + 9.4 gal = 85.8 gal
- **56.** miles per gallon means "miles divided by gallons," so: 2,428.5 miles ÷ 85.8 gal = **28.3 mpg**
- **57.** Miles: 34,428.3 34,122.8 = 305.5 Charge

For miles: 305.5 mi ×\$0.24 \$ 73.32 Daily charge: 2 days × \$49 + 98.00 \$171.32

58.

Heartbeats per minute	73
•	<u>×60</u>
a. Heartbeats per hour	4,380
-	<u>×24</u>
b. Heartbeats per day	105,120
	<u>×365.25</u>
c. Heartbeats per year	38,395,080
	×70
d. Heartbeats per 70-year life	2,687,655,600

- **59.** $\$3,450 \times 12 \text{ months} = \$41,400$
- 60. Rent per square foot means "rent divided by square feet," so $$41,400 \div 9,720 \text{ sq ft} = 4.26 per sq ft
- **61.** 151 lb 124 lb = **27 lb**
- 62. Pounds per month means "pounds divided by months," so: 27 lb ÷ 3 months = 9 lb per month
- 63.

$10 \times \$700$	\$7,000
4 × \$725	2,900
$2 \times \$750$	1,500
Total monthly rent	\$11,400
	<u>×12</u>
Total annual rent	\$136,800

Total annual rent	\$136,800
Less expenses	<u>- 41,000</u>
Amount after expenses	\$ 95,800
Less mortgage payments: $12 \times \$7,730$	- 92,760
Amount after mortgage payments	\$ 3,040

65.

Lodging: $14 \text{ nights} \times \$85 = \$1,190.00$ Meals: Cost per day: $4 \text{ people} \times \$24 \text{ per day} = \$96$

Cost per day: 4 people \times \$24 per day = \$96 Cost for 15 days: \$96 per day \times 15 days = 1,440.00

Gas:

Gallons required: 3,300 miles ÷ 22 miles per gallon = 150 gallons

Cost of gas: $150 \text{ gallons} \times \4.19 per gallon 628.50 Entertainment: $15 \text{ days} \times \$60 = \frac{+ 900.00}{\$4,158.50}$

66. Staples: $4 \times $33.50 =$ \$134.00 \leftarrow This is the better deal Central Supply: $3 \times $46.89 =$ \$140.67

67. Extra cost of upgrade plan: \$74.95 - \$43.95 = \$31Number of texts available: $$31 \div 0.20 per text = 155 text messages

Practice Test

- 1. Eighty-seven thousand, twenty-two and thirty-five hundredths
- 2. 300.084
- 3. 26.1 billion \longrightarrow 26,1 \longrightarrow 26,100,000,000
- **4.** 618.7<u>6</u>65 → **618.77**
- **5**. \$28,958 -> \$29,000
- 6. 3,275
- 7. 126
- 8. 322,000
- 9. 127.4
- 10. \$4 + \$5 + \$2 = \$11
- **11.** \$22,400 \$4,200 + \$1,228.50 + \$135 = **\$19,563.50**
- **12.** 112 acres + 84.625 acres + .82 acres = **197.445 acres**

13.

 Carpet
 \$21.25

 Pad
 4.65

 Installation
 4.00

Total cost per sq yd $$29.90 \times 182.5 \text{ sq yd} = $5,456.75$

14.

word problem guide

1. Solving for Miles per gallon

2. Known facts Traveled 1,051.6 miles (13,904.2 miles - 12,852.6 miles = 1,051.6 miles)

Used 53.82 gallons of gas

3. Procedure Miles per gallon means "miles divided by gallons," so

 $1,051.6 \text{ miles} \div 53.82 \text{ gallons} = 19.5 \text{ mpg}$

Chapter 2 **Fractions**

Unit 2.1 Types of fractions and modifying fractions

- 1. The top number (3) is the numerator. The bottom number (4) is the denominator.
- 2. (proper) 3. (mixed) 4. (improper) 5. (improper)

6. =
$$\frac{(4 \times 3) + 2}{3}$$
 = $\frac{14}{3}$

7. =
$$\frac{(2 \times 8) + 7}{8}$$
 = $\frac{23}{8}$ 8. = $\frac{(2 \times 6) + 5}{6}$ = $\frac{17}{6}$

$$8. = \frac{(2 \times 6) + 5}{6} = \frac{17}{6}$$

9.
$$2\overline{\smash)3} \longrightarrow 2\overline{\smash)3} \xrightarrow{\begin{array}{c} 1 \ 2 \end{array}} (remainder)$$

$$\begin{array}{c} 2 \\ 2 \end{array}$$

$$\begin{array}{c} 2 \\ 1 \ (remainder) \end{array}$$

10.
$$\begin{array}{ccc}
 2 & 2\frac{2}{3} \\
 \hline
 0 & \frac{6}{2} & \frac{6}{2}
\end{array}$$

11.
$$\Rightarrow \frac{3}{4} = \frac{?}{12} \Rightarrow \frac{3}{4} = \frac{9}{12}$$
 12. $\Rightarrow \frac{7}{6} = \frac{?}{30} \Rightarrow \frac{7}{6} = \frac{35}{30}$

12.
$$\rightarrow \frac{7}{6} = \frac{1}{30} \xrightarrow{?} \rightarrow \frac{7}{6} = \frac{35}{30}$$

13. =
$$\frac{6 \div 3}{21 \div 3}$$
 = $\frac{2}{7}$

Unit 2.2 Working with fractions and mixed numbers

15. =
$$\frac{2+3}{7}$$
 = $\frac{5}{7}$

17. =
$$\frac{2+5-1}{11}$$
 = $\frac{6}{11}$

19. =
$$\frac{20}{15}$$
 - $\frac{3}{15}$ = $\frac{17}{15}$

21. =
$$\frac{2}{3} \times \frac{3}{5} = \frac{2}{5}$$

23. =
$$\frac{4 \times 2}{3 \times 5}$$
 = $\frac{8}{15}$

29. =
$$\frac{17}{4} \times \frac{7}{3} = \frac{17 \times 7}{4 \times 3} = \frac{119}{12} = 9\frac{11}{12}$$

16. =
$$\frac{3-1}{5}$$
 = $\frac{2}{5}$

18. =
$$\frac{6}{15}$$
 + $\frac{5}{15}$ = $\frac{11}{15}$

20. =
$$\frac{9}{24}$$
 + $\frac{6}{24}$ - $\frac{4}{24}$ = $\frac{9+6-4}{24}$ = $\frac{11}{24}$

22. =
$$\frac{4}{5}$$
 \times $\frac{3}{8}$ = $\frac{3}{10}$

24. =
$$\frac{3}{5} \times \frac{3}{4} = \frac{3 \times 3}{5 \times 4} = \frac{9}{20}$$

26.
$$\Rightarrow 2\frac{3}{4} \Rightarrow 2\frac{9}{12}$$

 $+2\frac{2}{3} \Rightarrow +2\frac{8}{12}$
Need LCD $4\frac{17}{12} = 4 + 1\frac{5}{12} = 5\frac{5}{12}$

30. =
$$\frac{17}{4} \div \frac{7}{3} = \frac{17}{4} \times \frac{3}{7} = \frac{51}{28} = 1\frac{23}{28}$$

31.
$$9\frac{1}{2} \rightarrow 9\frac{2}{4}$$

 $+\frac{3}{4} \rightarrow +\frac{3}{4}$
 $+\frac{1}{2} \rightarrow +\frac{2}{4}$
Need LCD $9\frac{7}{4} = 9 + \frac{7}{4} = 9 + 1\frac{3}{4} = 10\frac{3}{4}$ inches

32.
$$3\frac{2}{3} \div \frac{1}{3} = \frac{11}{3} \div \frac{1}{3} = \frac{11}{3} \times \frac{3}{1} = 11$$
 loaves

33.
$$7 \times \frac{1}{5} = \frac{7}{1} \times \frac{1}{5} = \frac{7}{5} = 1\frac{2}{5}$$
 acres

34. \$150,000
$$\times \frac{4}{5} = \frac{\$150,000}{\$150,000} \times \frac{4}{5} = \$120,000$$
 \$150,000 Price - \$120,000 Loan = \$30,000

$$150,000 \text{ Price} - 120,000 \text{ Loan} = 30,000$$

35. 150 ÷ $1\frac{1}{4} = 150 \div \frac{5}{4} = \frac{30}{1} \times \frac{4}{5} = 120 \text{ days}$

36. \$120 \times $2\frac{1}{2}$ = \$120 \times $\frac{5}{2}$ = $\frac{$60}{1}$ \times $\frac{5}{2}$ = \$300

37. $\frac{1}{5} + \frac{1}{3} = \frac{3}{15} + \frac{5}{15} = \frac{8}{15}$ Daniel must buy: $\frac{15}{15} - \frac{8}{15} = \frac{7}{15}$ interest

38. Saturday rate: $\$ 8 \times 1\frac{1}{2} = \frac{\$8}{1} \times \frac{3}{2} = \12 per hour 5 hours × \$12 per hour = \$60

39. $2\frac{3}{4} \div \frac{1}{4} = \frac{11}{4} \div \frac{1}{4} = \frac{11}{4} \times \frac{4}{1} = 11$ feet

40. Discount: $\$44 \times \frac{1}{4} = \frac{11}{4} \times \frac{1}{4} = \11 Sale price: \$44 - \$11 = \$33

41. 85 ÷ $2\frac{1}{3}$ = 85 ÷ $\frac{7}{3}$ = $\frac{85}{1}$ × $\frac{3}{7}$ = $\frac{255}{7}$ = 36 $\frac{3}{7}$ = **36 whole shirts**

Unit 2.3 Fraction/decimal conversions

42. 13.38 Thirteen and thirty-eight hundredths = $13\frac{38}{100}$ = $13\frac{19}{50}$

43. Three tenths = $\frac{3}{10}$

44. Three hundred seventy-five thousandths = $\frac{375}{1.000} = \frac{375 \div 125}{1.000 \div 125} = \frac{3}{8}$

45. $\begin{array}{r}
 3125 \\
 16)5.0000 \\
 48 \\
 20 \\
 \underline{16} \\
 40 \\
 32 \\
 \end{array}$

46. $\frac{.66}{3)2.00} = .\overline{66}$ $\frac{18}{20}$ $\frac{18}{2}$ (repeating)

47. $\frac{.4545}{11)5.0000} = .\overline{45}$ $\frac{44}{5}$

48. $\frac{.8}{5)4.0} + 3 = 3.8$

80

49. Problems 45 and 48 are terminating; 46 and 47 are repeating.

50. $\frac{1}{2}$ × .57 = .5 × .57 = .285 acres

51. $\frac{1}{7} \times \frac{\$12,320,000}{1} = \frac{\$12,320,000}{7} = \$1,760,000$

52. Yes. Both fractions can be converted to terminating decimals: .25 + .20 = .45

53. No. $\frac{1}{3}$ cannot be converted to a terminating decimal.

Challenge problems

54. Length of fence (inches): $118 \times 12 = 1,416$ inches

Number of slats: $1,416 \div 3\frac{3}{4} = 1,416 \div 3.75 = 377.6 = 378$ full slats

Cost: $378 \text{ slats} \times \$1.25 = \$472.50$

55. Flour: $1\frac{2}{3} \times 3\frac{1}{2} = \frac{5}{3} \times \frac{7}{2} = \frac{5 \times 7}{3 \times 2} = \frac{35}{6} = 5\frac{5}{6}$ cups

Peanut butter: $\frac{1}{3} \times 3\frac{1}{2} = \frac{1}{3} \times \frac{7}{2} = \frac{7}{6} = 1\frac{1}{6}$ cups

Eggs: $2 \times 3\frac{1}{2} = \frac{\aleph}{1} \times \frac{7}{8} = 7$ eggs

56. $\frac{1}{4} + \frac{1}{5} + \frac{1}{8} = \frac{10}{40} + \frac{8}{40} + \frac{5}{40} = \frac{10+8+5}{40} = \frac{23}{40} \implies \frac{40}{40} - \frac{23}{40} = \frac{17}{40}$ for other things

57. Housing:
$$\frac{1}{4} \times \$68,400 = .25 \times \$68,400 = \$17,100$$

Food:
$$\frac{1}{5}$$
 × \$68,400 = .20 × \$68,400 = \$13,680

Transportation:
$$\frac{1}{8} \times \$68,400 = .125 \times \$68,400 = \$8,550$$

Other:
$$\frac{17}{40}$$
 × \$68,400 = .425 × \$68,400 = $\frac{$29,070}{$68,400}$

58.
$$\frac{1}{3}$$
 × 252 = $\frac{1}{3}$ × $\frac{252}{1}$ = $\frac{252}{3}$ = 84 acres → 252 - 84 = **168 acres available**

59.
$$168 \div \frac{3}{8} = \frac{3}{10} \times \frac{3}{3} = 448$$
 homesites

61.
$$2\frac{1}{4} \longrightarrow 2\frac{2}{8}$$

 $1\frac{3}{8} \longrightarrow 1\frac{3}{8}$
 $+4\frac{1}{2} \longrightarrow +4\frac{4}{8}$
Need LCD $7\frac{9}{8} = 7 + \frac{9}{8} = 7 + 1\frac{1}{8} = 8\frac{1}{8}$ yards

62. 195 ÷
$$8\frac{1}{8}$$
 = 195 ÷ $\frac{65}{8}$ = $\frac{3195}{1}$ × $\frac{8}{65}$ = **24 suits**

63.
$$\$3,000 \div 24 \text{ suits} = \$125 \text{ per suit}$$

65. Corner B is the lowest, since it is
$$60\frac{3}{8}$$
 inches below the builder's level.

Corner A.
$$60\frac{3}{8} - 59\frac{1}{2} = 60\frac{3}{8} - 59\frac{4}{8} = 59\frac{11}{8} - 59\frac{4}{8} = \frac{7}{8}$$
 inch. Point A is $\frac{7}{8}$ of an inch higher than B.

Corner C.
$$60\frac{3}{8} - 58\frac{3}{16} = 60\frac{6}{16} - 58\frac{3}{16} = 2\frac{3}{16}$$
 inch. Point C is $2\frac{3}{16}$ inches higher than B.

Corner D.
$$60\frac{3}{8}$$
 - $59\frac{11}{16}$ = $60\frac{6}{16}$ - $59\frac{11}{16}$ = $59\frac{22}{16}$ - $59\frac{11}{16}$ inch. Point D is $\frac{11}{16}$ of an inch higher than B.

Practice Test

1.
$$3\frac{5}{8} = \frac{(3 \times 8) + 5}{8} = \frac{29}{8}$$
 2. $\frac{13}{3} = 4\frac{1}{3}$

2.
$$\frac{13}{3} = 4\frac{1}{3}$$

3.
$$\frac{21}{27} = \frac{21 \div 3}{27 \div 3} = \frac{7}{9}$$

5. $\frac{2}{5} + \frac{2}{3} - \frac{1}{4} = \frac{24}{60} + \frac{40}{60} - \frac{15}{60} = \frac{24 + 40 - 15}{60} = \frac{49}{60}$

4.
$$\frac{153}{198} = \frac{153 \div ?}{198 \div ?} = \frac{153 \div 9}{198 \div 9} = \frac{17}{22}$$

$$\frac{153}{198} = \frac{153 \div ?}{198 \div ?} = \frac{153 \div 9}{198 \div 9} = \frac{17}{22}$$

$$5. \frac{2}{5} + \frac{2}{3} - \frac{1}{4} = \frac{24}{60} + \frac{40}{60} - \frac{15}{60} = \frac{24 + 40 - 15}{60} = \frac{49}{60}$$

$$6. 1\frac{2}{3} \times \frac{5}{4} = \frac{5}{3} \times \frac{5}{4} = \frac{5}{3 \times 4} = \frac{25}{12} = 2\frac{1}{12}$$

$$7. 2\frac{1}{4} \div \frac{5}{7} = \frac{9}{4} \times \frac{7}{5} = \frac{9 \times 7}{4 \times 5} = \frac{63}{20} = 3\frac{3}{20}$$

5.
$$\frac{2}{5} + \frac{2}{3} - \frac{1}{4} = \frac{24}{60} + \frac{40}{60} - \frac{15}{60} = \frac{24 + 40 - 15}{60} = \frac{24 + 40 - 15}{6$$

7.
$$2\frac{1}{4} \div \frac{5}{7} = \frac{9}{4} \div \frac{5}{7} = \frac{9}{4} \times \frac{7}{5} = \frac{9 \times 7}{4 \times 5} = \frac{63}{20} = 3$$

8.
$$3\frac{2}{3} \longrightarrow 3\frac{8}{12} \longrightarrow 2\frac{20}{12}$$
$$-\frac{1\frac{3}{4}}{4} \longrightarrow -\frac{1\frac{9}{12}}{12} \longrightarrow -\frac{1\frac{9}{12}}{1\frac{11}{12}}$$
Need LCD Must borrow

9. .625 = six hundred twenty-five thousandths =
$$\frac{625}{1,000} = \frac{625 \div 125}{1,000 \div 125} = \frac{5}{8}$$

9. .625 = six hundred twenty-five thousandths =
$$\frac{625}{1,000} = \frac{625 \div 125}{1,000 \div 125}$$

10. $\frac{.6875}{16)11.0000} + 4 = 4.6875$
 $\frac{96}{140}$
 $\frac{128}{120}$
 $\frac{112}{80}$
 $\frac{112}{80}$

11.
$$3\frac{1}{2} \longrightarrow 3\frac{4}{8}$$

 $\frac{5}{8} \longrightarrow \frac{5}{8}$
 $+\frac{5}{8} \longrightarrow +\frac{5}{8}$
Need LCD $3\frac{14}{8} = 3 + \frac{14}{8} = 3 + 1\frac{6}{8} = 4\frac{3}{8}$ inches

12. Length of fence (inches): $155 \times 12 = 1,860$ inches

Number of slats: $1,860 \div 3.75 = 496$ slats

Cost: $496 \text{ slats} \times \$1.45 = \$719.20$

Chapter 3 Equations: A Guide to Finding the Unknown

Unit 3.1 Mathematical symbols and expressions

2.
$$4 \times 9$$
 4.9 4(9)

6.
$$4^7 = 4 \cdot 4 \cdot 4 \cdot 4 \cdot 4 \cdot 4 = 16,384$$

$$7. = 4 + 10 = 14$$

8. =
$$(11)^2$$
 = 121

$$9. = 8 + 9 = 17$$

10.
$$= 5[2 + 3(2) - 5] + 3 = 5[2 + 6 - 5] + 3 = 5[3] + 3 = 15 + 3 = 18$$

11. =
$$3 + (+5) + (-2) - (+2) - (-6) = 3 + 5 - 2 - 2 + 6 = 10$$

15.
$$= 6$$

$$16. = 2q + 2r$$

$$17. = 15a + 10b$$

18. =
$$2y - y + 2 = y + 2$$

19. =
$$3m + 4m + 2 - 3m + 6 = 4m + 8$$

20. Cannot simplify

Unit 3.2 Equations: Solving for the unknown

21. *b* is an equation; the other two are expressions (no equal sign).

22.
$$x - 8 = 27$$

 $\begin{array}{r} +8 & +8 \\ x & = 35 \end{array}$

24.
$$3a = 15$$

 $\frac{3a}{3} = \frac{15}{3}$
 $a = 5$

25.
$$\frac{t}{8} = 3$$

10

26.
$$\frac{2}{7}y = 3$$

$$\frac{8}{1} \left(\frac{t}{8} \right) = 8(3)$$

$$t = 24$$

$$\frac{\chi}{\chi} \left(\frac{\chi}{\chi} \right) y = \frac{7}{2} \left(\frac{3}{1} \right)$$

$$y = \frac{21}{2}$$

27.
$$2b + 7 = 43$$

 $\frac{-7}{2b} = 36$
 $2b = 36$
 $b = 18$

28.
$$3m - (m - 4) = 14$$

 $3m - m + 4 = 14$
 $2m + 4 = 14$
 $-\frac{4}{2m} = 10$
 $\frac{2m}{2} = \frac{10}{2}$
 $m = 5$

29.
$$2p - 4 = 5p + 8$$

 $\frac{-2p}{4} - \frac{-2p}{4} - \frac{-2p}{8}$
 $\frac{-8}{4} - \frac{-8}{4}$
 $\frac{-12}{3} = \frac{3p}{3}$
 $\frac{-4}{3} = p$

30.
$$3(3x + 5) - 19 = 2(x + 5)$$

 $9x + 15 - 19 = 2x + 10$
 $9x - 4 = 2x + 10$
 $\frac{-2x}{7x - 4} = \frac{-2x}{10}$
 $\frac{+4}{7x} = \frac{+4}{14}$
 $\frac{7x}{7} = \frac{14}{7}$
 $x = 2$

31.
$$3(3x + 5) - 19 = 2(x + 5)$$

$$\sqrt[4]{3(3(2) + 5)} - 19 = 2(2 + 5)$$

$$3(6 + 5) - 19 = 2(7)$$

$$3(11) - 19 = 14$$

$$33 - 19 = 14$$

$$14 = 14$$

32.
$$FV = PV (1+i)^n = \$500 (1+.04)^5 = \$500 (1.04)^5 \approx \$500 (1.21665290) \approx \$608.33$$

$$FV = PV (1 + i)^n The compound interst formula$$

$$\frac{FV}{(1 + i)^n} = PV Divide each side by (1 + i)^n$$

$$PV = \frac{FV}{(1 + i)^n} Rearrange so PV is on the left$$

Unit 3.3 Guideline for solving word problems

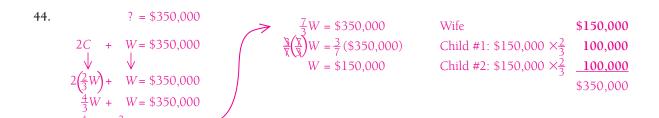
33.

35.
$$x + 12$$
 or $12 + x$

37.
$$2(x + y + z)$$

38.
$$y = x + 4$$

39.
$$r + 2 = t + 4$$


40.
$$\frac{n}{3} = 18$$

42. Note: Because the letter "O" resembles the number zero, let's use "F" for offices.

? = 6,100

$$F + W + S = 6,100$$

 $\downarrow \downarrow \qquad \downarrow \qquad \downarrow$
1,300 + 2S + S = 6,100 Offices 1,300 sq ft
1,300 + 3S = 6,100 Showroom 1,600 sq ft
3S = 4,800 Warehouse: 2(1,600 sq ft) 3,200 sq ft
 $S = 1,600$ Offices 1,300 sq ft 6,100 sq ft

43.
$$? = $280,000$$

 $L + H = $280,000$
 $V = V$
 $L + 2.5L = $280,000$ Land \$80,000
 $3.5L = $280,000$ Home: $2.5($80,000)$ $200,000$
 $L = $80,000$ \$280,000

Challenge problems

b. ? = 6,000 lb

$$S + C + G + W = 6,000 \text{ lb}$$

 $\sqrt[4]{} \sqrt[4]{} \sqrt[4]{}$

49. The \$190,000 guess is too high, because it results in total coverage of \$209,000 instead of \$198,000. So, try a lower guess. If that guess results in total coverage that is too low, try a higher guess; if that guess results in total coverage that is too high, try a lower guess. Keep narrowing down the guess until total coverage is \$198,000.

	Home	\$180,000			
	Additional	+ 18,000			
	Total	\$198,000	(works!)		
~ 0		2 42 700			
50.		? = \$3,590			
	P	+ T = \$3,590			
				D	*******
	₩	0.07P = \$3,590		Price of products	\$3,355.14
				Sales tax: $$3,355.14 \times .07$	+ 234.86
]	1.07P = \$3,590	P + .07P = 1.07P	Total collected from customers	\$3,590.00
		P = \$3,355.14	4		, , , , , , , , , , , , , , , , , , , ,
		1 40,000.1	I and the second		

51. ? = 18 oz
$$\begin{array}{cccc}
C + & A & + M & = 18 \text{ oz} \\
\downarrow & & \downarrow & & \downarrow \\
2M + & 3C & + M & = 18 \text{ oz} \\
\downarrow & & \downarrow & & \downarrow \\
2M + & 3(2M) + M & = 18 \text{ oz}
\end{array}$$

$$2M + 3(2M) + M = 18 \text{ oz}$$

 $2M + 6M + M = 18 \text{ oz}$
 $9M = 18 \text{ oz}$
 $M = 2 \text{ oz}$

There are twice as many cashews as macadamia nuts (C = 2M)

Macadamia nuts 2 oz Cashews: 2(2 oz) 4 oz Almonds: 3(4 oz) 12 oz 18 oz

52.
$$? = $180,000$$

$$L - F - A = $180,000$$

Loan amount \$187,416.88 Fee to lender: $$187,416.68 \times .0225$ - 4,216.88 Additional fees - 3,200.00 Net proceeds \$180,000.00

53.
$$F + V = R$$

 $\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$
 $\$13,000 + \$8C = \$28C$
 $\$13,000 = \$20C$
 $650 = C$

Fixed costs \$13,000 Variable costs: 650(\$8) + 5,200Total costs \$18,200 Revenues: 650(\$28) \$18,200

54. 650 customers \div 25 days = **26 customers per day**

Practice Test

2.
$$4^3 = 4.4.4 = 64$$

3.
$$2 + 8 \times 4 = 2 + 32 = 34$$

2.
$$4^3 = 4 \cdot 4 \cdot 4 = 64$$
 3. $2 + 8 \times 4 = 2 + 32 = 34$ **4.** $= 2 + 3(7 - 4)^2 = 2 + 3(3)^2 = 2 + 3(9) = 2 + 27 = 29$

5. (2)(-3) = -6; (-6)(-2) = 12;
$$\frac{12}{-4}$$
 = -3 **6.** = 5 - 6a + 8 + 3a = -3a + 13

6. =
$$5 - 6a + 8 + 3a = -3a + 13$$

7.
$$\frac{+12}{m} = \frac{+12}{40}$$

8.
$$\frac{5}{4}$$
 $\frac{4}{5}$ $y = \frac{5}{4} \left(\frac{28}{1} \right)$ $y = 35$

9.
$$3p = 12$$

 $p = 4$

9.
$$3p = 12$$
 $p = 4$ **10.** $8p - 4 - 3p + 4 = 2p + 5$ $5p = 2p + 5$ $3n = 5$

11.
$$m + 4 = n + 3$$

12.
$$? = $30,000$$

 $B + C = $30,000$
 $\psi \quad \psi$
 $B + B + $5,000 = $30,000$
 $2B + $5,000 = $30,000$

2B = \$25,000

B = \$12,500

13.
$$F + V = R$$

 $\sqrt{} \sqrt{} \sqrt{}$
\$4,800 + \$.015C = \$.06C
\$4,800 = \$.045C

106,667 ≈ C

Fixed costs \$4,800
Variable costs:
$$106,667(\$0.015) \approx \frac{+1,600}{50,400}$$

Total costs \$6,400
Revenues: $106,667(\$0.06) \approx \$6,400$

Chapter 4 **Percents**

Unit 4.1 Percent conversions

9. =
$$36 \times \frac{1}{100} = \frac{36}{100} = \frac{9}{25}$$

10. =
$$62\frac{1}{2}\% = \frac{125}{2} \times \frac{1}{100} = \frac{125}{200} = \frac{5}{8}$$

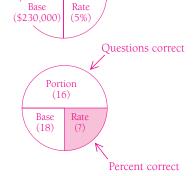
Unit 4.2 The percent formulas

11. Portion = Base
$$\times$$
 Rate = \$400 \times 7% = \$400 \times .07 = \$28

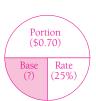
13. Base =
$$\frac{\text{Portion}}{\text{Rate}}$$
 = $\frac{60}{40\%}$ = $\frac{60}{.40}$ = 150
Check answer: $150 \times 40\%$ = 60

15. Rate =
$$\frac{\text{Portion}}{\text{Base}}$$
 = $\frac{25}{50}$ = .50 = **50%**
Check answer: 50 × 50% = 25

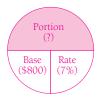
12. Portion = Base
$$\times$$
 Rate = 250 \times 35% = 250 \times .35 = 87.5


14. Base =
$$\frac{\text{Portion}}{\text{Rate}}$$
 = $\frac{240}{75\%}$ = $\frac{240}{.75}$ = **320**
Check answer: $320 \times 75\%$ = 240

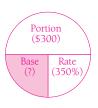
16. Rate =
$$\frac{\text{Portion}}{\text{Base}}$$
 = $\frac{117}{90}$ = 1.30 = **130%**
Check answer: 90 × 130% = 117


Portion

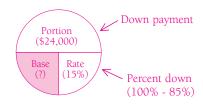
Rate


17. Portion = Base
$$\times$$
 Rate = \$230,000 \times 5% = \$230,000 \times .05 = \$11,500

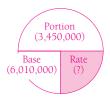
- 18. You get 16 correct, so: Rate = $\frac{\text{Portion}}{\text{Base}}$ = $\frac{16}{18} \approx .889 \approx 88.9\%$
- 19. Portion = Base \times Rate = \$42,700 \times 60% = \$42,700 \times .60 = \$25,620 Robbie: Portion = Base \times Rate = \$42,700 \times 40% = \$42,700 \times .40 = 17,080 \$42,700
- 20. Questions you must answer correctly: Portion = Base \times Rate = 35 \times 85% = 35 \times .85 = 29.75 Because it is not possible to get .75 of a question correct, you must get at least 30 questions correct to get at least 85%. This means you can miss no more than 5 questions to get a B.
- Base = $\frac{\text{Portion}}{\text{Rate}}$ = $\frac{\$0.70}{25\%}$ = $\frac{\$0.70}{25}$ = \$2.8021. Check answer: $$2.80 \times 25\% = 0.70



Portion = Base \times Rate = \$800 \times 7% = \$800 \times .07 = \$56 22.


23. Base = $\frac{\text{Portion}}{\text{Rate}}$ = $\frac{\$300}{350\%}$ = $\frac{\$300}{3.50}$ = \$85.71

Check answer: $\$85.71 \times 350\% = \299.99 (penny difference due to rounding cost to exactly \$85.71)



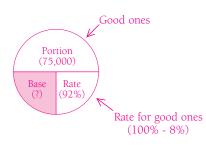
24. Base = $\frac{\text{Portion}}{\text{Rate}}$ = $\frac{\$24,000}{15\%}$ = $\frac{\$24,000}{.15}$ = \$160,000

Check answer: $$160,000 \times 15\% = $24,000$

25. Rate = $\frac{\text{Portion}}{\text{Base}} = \frac{3.450,000}{6.010,000} \approx .574 \approx 57.4\%$

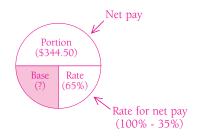
Unit 4.3 Increase and decrease problems

26. Sales tax: Portion = Base \times Rate = \$970 \times 6.75% = \$970 \times .0675 = \$65.48 Total amount due: \$970 (original amount) + \$65.48 (increase) = \$1,035.48

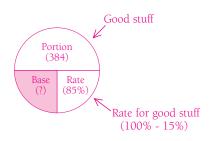

27. Amount of decrease: Portion = Base \times Rate = \$872 \times 3% = \$872 \times .03 = \$26.16 New amount: \$872 (original amount) - \$26.16 (decrease) = \$845.84

28. Pay raise: Portion = Base \times Rate = \$9.70 \times 10% = \$9.70 \times .10 = \$0.97 New hourly rate: \$9.70 (original amount) + \$0.97 (increase) = \$10.67

29. Base = $\frac{\text{Portion}}{\text{Rate}} = \frac{75,000}{92\%} = \frac{75,000}{.92} \approx 81,521.74 \approx 81,522 \text{ batteries}$


Note: .74 of a battery is not much good, so we round up to 81,522.

Check answer: $81,522 - 8\%(81,522) \approx 75,000$


30. Base = $\frac{\text{Portion}}{\text{Rate}}$ = $\frac{\$344.50}{65\%}$ = $\frac{\$344.50}{.65}$ = \$530

Check answer: \$530 - 35%(\$530) = \$344.50

31. Base = $\frac{Portion}{Rate}$ = $\frac{384}{85\%}$ = $\frac{384}{.85}$ ≈ 451.76 sq ft ≈ 452 sq ft

Check answer: 451.76 - 15%(451.76) = 384.00

32. Percent increase =
$$\frac{\text{Amount of increase}}{\text{Original amount}} = \frac{14,817 - 13,577}{13,577} = \frac{1,240}{13,577} \approx .091 \approx 9.1\%$$

33. Percent increase =
$$\frac{\text{Amount of increase}}{\text{Original amount}}$$
 = $\frac{\$479 - \$429}{\$429}$ = $\frac{\$50}{\$429}$ \approx .117 \approx 11.7%

34. Percent decrease =
$$\frac{\text{Amount of decrease}}{\text{Original amount}} = \frac{433 - 402}{433} = \frac{31}{433} \approx .072 \approx 7.2\%$$

35. Percent increase =
$$\frac{\text{Amount of increase}}{\text{Original amount}} = \frac{\$750 - \$675}{\$675} = \frac{\$75}{\$675} \approx .111 \approx 11.1\%$$

36. Percent increase =
$$\frac{\text{Amount of increase}}{\text{Original amount}} = \frac{11,844.22 - 10,242.53}{10,242.53} = \frac{1,601.69}{10,242.53} \approx .156 \approx 15.6\%$$

37. Percent decrease =
$$\frac{\text{Amount of decrease}}{\text{Original amount}} = \frac{\$2,200 - \$1,477}{\$2,200} = \frac{\$723}{\$2,200} \approx .329 \approx 32.9\%$$

38. Percent increase =
$$\frac{\text{Amount of increase}}{\text{Original amount}} = \frac{43.5 - 31.9}{31.9} = \frac{11.6}{31.9} \approx .364 \approx 36.4\%$$

The article is incorrect. Loan volume has increased 36.4% not 26.7%. Whoever prepared the article made a mistake by dividing the increase (\$11.6 million) by the *new* amount (\$43.5 million).

39. Percent decrease =
$$\frac{\text{Amount of decrease}}{\text{Original amount}} = \frac{\$45.95 - \$24.99}{\$45.95} = \frac{\$20.96}{\$45.95} \approx .456 \approx 45.6\%$$

Challenge problems

- **40.** Total commission: $$235,000 \times 7\% = $235,000 \times .07 = $16,450$ Company share: $$16,450 \times 60\% = $16,450 \times .60 = $9,870$ Your share: $$9,870 \times 70\% = $9,870 \times .70 = $6,909$
- **41.** Portion = Base \times Rate = \$42,378 \times 13% = \$42,378 \times .13 = \$5,509.14

42. Rate =
$$\frac{\text{Portion}}{\text{Base}}$$
 = $\frac{\$2,000}{\$28,000} \approx .071 \approx 7.1\%$

43. Base =
$$\frac{\text{Portion}}{\text{Rate}}$$
 = $\frac{\$8,718.45}{13\%}$ = $\frac{\$8,718.45}{.13}$ = $\$67,065$

44. Cost of meal \$55.00 Sales tax:
$$$55 \times 7\%$$
 ± 3.85 Cost, including sales tax \$58.85 Tip: $$58.85 \times 15\%$ ± 8.83 Total cost \$67.68

No, the total cost is more than you have.

45. Amount of increase: Portion = Base \times Rate = \$1,250 \times 20% = \$250 New amount: \$1,250 (original amount) + \$250 (increase) = \$1,500

46. Rate =
$$\frac{\text{Portion}}{\text{Base}} = \frac{\$2,450}{\$1,500} \approx 1.6333 \approx 163.3\%$$

47. Base =
$$\frac{Portion}{Rate}$$
 = $\frac{$422,500}{9.5\%}$ = $\frac{$422,500}{0.05}$ = \$4,447,368.42 \approx \$4,447,000

48. Base =
$$\frac{\text{Portion}}{\text{Rate}}$$
 = $\frac{\$1,200}{70\%}$ = $\frac{\$1,200}{70}$ = $\$1,714.29$

Check answer: \$1,714.29 - 30%(\$1,714.29) = \$1,200.00

49. Percent decrease =
$$\frac{\text{Amount of decrease}}{\text{Original amount}} = \frac{\$24.99 - \$8.99}{\$24.99}$$

= $\frac{\$16.00}{\$24.99} \approx .640 \approx 64\%$

50. Percent decrease =
$$\frac{\text{Amount of decrease}}{\text{Original amount}}$$
 = $\frac{68.8 - 56.5}{68.8}$
= $\frac{12.3}{68.8} \approx .1788 \approx 17.88\%$

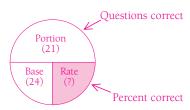
51. Rate =
$$\frac{\text{Portion}}{\text{Base}} = \frac{7.33}{8.85} \approx .83 \approx 83\%$$

52. Mr. Ely received only \$650.50 back from his original \$1,000 investment! This happened because Volatile always increased from lower prices and dropped 20% from higher prices. For example, on the first day, the stock value increased 20%, turning it into \$1,200. But on the second day, the value decreased \$240 (20% × \$1,200), turning it into only \$960. Then the cycle kept repeating, sending the price lower and lower.

Practice Test

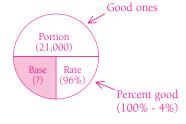
1.
$$.065 = .065 = 6.5\%$$
 2. $87\frac{1}{2}\% = 87.5\% = .875$ 3. $\frac{5}{16} = .3125 = 31.25\%$

3.
$$\frac{5}{16}$$
 = .3125 = 31.25%


4.
$$12.5\% = 12\frac{1}{2}\% = \frac{25}{2}\% = \frac{25}{2} \times \frac{1}{100} = \frac{25}{200} = \frac{1}{8}$$

- 5. Portion = Base \times Rate = \$210,000 \times 20% = \$210,000 \times .20 = \$42,000
- Base = $\frac{\text{Portion}}{\text{Rate}}$ = $\frac{\$10,800}{120\%}$ = $\frac{\$10,800}{120}$ = \$9,0006.

Check answer: \$9,000 + 20%(\$9,000) = \$10,800



7. Rate = $\frac{Portion}{Base}$ = $\frac{21}{24} \approx .875 = 87.5\%$

- 8. Sales tax : Portion = Base \times Rate = \$750 \times 7% = \$750 \times .07 = \$52.50 Total amount: $$750 ext{ (original amount)} + $52.50 ext{ (increase)} = 802.50
- Base = $\frac{\text{Portion}}{\text{Rate}}$ = $\frac{21,000}{96\%}$ = $\frac{21,000}{.96}$ = **21,875 tires** 9.

Check answer: 21,875 - 4%(21,875) = 21,000

Percent decrease = $\frac{\text{Amount of decrease}}{\text{Original amount}} = \frac{8,422 - 8,318}{8,422} = \frac{104}{8,422} \approx .012 \approx 1.2\%$ 10.

Trade and Cash Discounts Chapter 5

Unit 5.1 Trade discounts

	Product	List price	Trade discount rate	Trade discount amount	Net price
1.	TV	\$900	30%	\$900 × 30% = \$270	\$900 - \$270 = \$630
2.	Copy machine	\$700	25%	\$700 × 25% = \$175	\$700 - \$175 = \$525

	Product	List price	Trade discount rate	Complement of rate	Net price
3.	TV	\$900	30%	100% - 30% = 70%	$$900 \times 70\% = 630
4.	Copy machine	\$700	25%	100% - 25% = 75%	\$700 × 75% = \$525

5. Answers are the same, confirming both approaches work.

6.	List price	\$6,400
	First discount: $$6,400 \times 25\%$	<u>- 1,600</u>
	Price after first discount	\$4,800
	Second discount: $$4,800 \times 10\%$	<u>- 480</u>
	Price after second discount	\$4,320
	Third discount: $$4,320 \times 10\%$	<u>- 432</u>
	Net price	\$3,888

7. Step 1 (complements) Step 2 (multiply complements) Step 3 (complement of Step 2)

25% 10% 10%	$75\% \times 90\% \times 90\%$	100.00%
\downarrow \downarrow	$= .75 \times .90 \times .90$	<u>- 60.75%</u>
75% 90% 90%	= .6075	39.25%
	= 60.75%	

8. It means that a 39.25% single discount is identical to a 25/10/10 series discount.

9. List price	\$6,400
Trade discount: \$6,400 × 39.25%	<u>-2,512</u>
Net price	\$3,888

Unit 5.2 Cash discounts

10. List price	\$800.00
Less returned goods	<u>- 50.00</u>
Price of goods after returns	\$750.00
Less trade discount: $$750 \times 20\%$	<u>- 150.00</u>
Net price	\$600.00
Less cash discount: $$600 \times 4\%$	<u>- 24.00</u>
Net price, less cash discount	\$576.00
Add freight	+ 20.00
Net amount due	\$596.00

- 11. a. Cash discount: $$240 \times 3\% = 7.20
 - **b.** Net amount due: \$240 \$7.20 = **\$232.80**
 - c. Last day of discount period: October 7 + 20 = October 27
 - d. Last day of credit period: October 7 is day 280; 280 + 45 = 325. Day 325 is November 21.
- 12. Discount = $\$75.20 \times 1\% = \0.75 ; net amount due = \$75.20 \$0.75 = \$74.45
- **13. a.** Last day of discount period: The credit period begins on July 23, the date the goods were received. July 23 is day 204: 204 + 15 = 219; day 219 is **August 7.**
 - **b.** Last day of credit period: 204 + 45 = 249; day 249 is **September 6.**
- **14. a.** Last day of discount period: The credit period does not begin until the last day of August (because the invoice is dated after the 25th of the month). The last day of the discount period is 10 days beyond August 31, which is **September 10**.
 - **b.** The last day of credit period: Because the invoice does not specify when the credit period ends, we assume the credit period extends 20 days past the last day of the discount period, which is **September 30**.
- **15.** The discount period ends 100 days (10 + 90 = 100) after the date of the invoice. February 5 is day 36. The last day of the discount period is day 136 (36 + 100 = 136). Day 136 is **May 15** (remember, because the year is a leap year, 1 must be added to each day after February 28: so May 16 is day 137 and May 15 is day 136).

16. Amount credited =
$$\frac{\text{Amount paid}}{\text{Complement of cash discount rate}} = \frac{\$10,000}{100\% - 3\%} = \frac{\$10,000}{97\%} = \frac{\$10,000}{.97} = \$10,309.28$$

17.
$$\frac{6}{94} \times \frac{365}{30-10} = \frac{6}{94} \times \frac{365}{20} = \frac{6 \times 365}{94 \times 20} = \frac{2.190}{1.880} \approx 1.1649 \approx 116.49\%$$

Challenge problems

- 18. Cash discount
- 19. True
- **20. False.** Trade discounts are given as an incentive to buy the product, regardless of whether the invoice is paid within the discount period.

21. Company A: \$3,200 - 30%(\$3,200) = \$2,240.00

Company B: \$2,900 - 20%(\$2,900) = \$2,320; \$2,320 - 10%(\$2,320) = \$2,088.00

Company C: \$3,450 - 20%(\$3,450) = \$2,760; \$2,760 - 15%(\$2,760) = \$2,346; \$2,346 - 5%(\$2,346) = \$2,228.70

	Product	List price	Trade discount rate	Net price	Cash discount	Net amount due
22.	Tent	\$500	30%	\$350.00	2%	\$343.00
23	Backpack	\$350	30/10	\$220.50	8%	\$202.86
24.	Sleeping Bag	\$400	25/15/5	\$242.25	4%	\$232.56

25. List price \$455.00

26 October 3 + 15 = **October 18**

27. Net price \$341.25 Cash discount: \$341.25 × 3% - 10.24 Net amount due **\$331.01**

28. October 3 is day number 276; 276 + 45 = 321. Day 321 is **November 17.**

29. $\frac{3}{97} \times \frac{365}{45-15} = \frac{3}{97} \times \frac{365}{30} = \frac{3 \times 365}{97 \times 30} = \frac{1.095}{2.910} \approx .3763 \approx 37.63\%$

30. 15 × \$183.25 = \$2,748.75 3 × \$195.50 = \$586.50 24 × \$34.98 = \$839.52

31. No. There is an error for the Sub-Zero Sleeping Bags:

 Subtotal
 \$586.50

 First discount: \$586.50 \times 20%
 -117.30

 Price after first discount
 \$469.20

 Second discount: \$469.20 \times 5%
 -23.46

 Net price
 \$445.74

32. Total Net Prices: \$2,199.00 + \$445.74 + \$671.62 = \$3,316.36

Balance Due: \$3,316.36 + \$182.00 = \$3,498.36

33. a. Last day of discount period: March 13 + 15 = March 28

b. Last day of credit period: March 13 is day 72; 72+ 45 = 117. Day 117 is **April 27**.

34. Total Net price (from Problem 32) \$3,316.36

Cash discount: $\$3,316.36 \times 3\%$ - 99.49 Remember, the discount does not apply to freight

Net price, less cash discount \$3,216.87 Add freight + 182.00 Net amount due \$3,398.87

35. Let's use our equation-solving skills from Chapter 3.

P - 30%P = \$8.78 Substitute: D = 30%P

70%P = \$8.78 Combine terms on left (100%P - 30%P = 70%P) P = \$12.54 Divide both sides of equation by 70% (or .70)

36. List price \$12.54 Trade discount: \$12.54 × 30% - 3.76

1 rade discount: \$12.54 × 30% - 3.76

Net price \$8.78

Practice Test

1. List price Trade discount amount: \$820 × 25%	\$820.00 -205.00
Net price	\$615.00
2. List price	\$22.00
First discount: $$22 \times 20\%$	<u>- 4.40</u>
Price after first discount	\$17.60
Second discount: $$17.60 \times 10\%$	<u>- 1.76</u>
Net price	\$15.84

3. Step 1 (complements) Step 2 (multiply complements) Step 3 (complement of Step 2)

4. October 28 is day 301; 301 + 20 = 321. Day 321 is **November 17**.

5.	List price	\$820.00
	Trade discount: $$820 \times 25\%$	<u>- 205.00</u>
	Net price	\$615.00
	Cash discount: $$615 \times 2\%$	- 12.30
	Net amount due	\$602.70

6. Amount credited =
$$\frac{\text{Amount paid}}{\text{Complement of cash discount rate}} = \frac{\$11,500}{100\% - 5\%} = \frac{\$11,500}{95\%} = \frac{\$11,500}{.95} = \$12,105.26$$

7.
$$\frac{8}{92} \times \frac{365}{60-10} = \frac{8}{92} \times \frac{365}{50} = \frac{8 \times 365}{92 \times 50} = \frac{2.920}{4600} \approx .6348 \approx 63.48\%$$

Chapter 6 Markupand Markdown

Unit 6.1 Markup

	Cost	Markup(\$)	Selling price
1.	\$3,000	\$700	\$3,700
2.	\$1.69	\$0.50	\$2.19
3.	\$120	\$65	\$185
4.	\$300	\$200	\$500

- 5. \$0. Selling price is the same as cost.
- 6. False

7.
$$S = C + M$$

 $S = $700 + 20\%($700)$
 $S = $700 + 140
 $S = 840

8.
$$S = C + M$$

$$$360 = 100\%C + 20\%C$$

$$$360 = 120\%C$$

$$$360 = 1.20C$$

$$\frac{$360}{1.20} = \frac{1.20}{1.28}C$$

$$$300 = C$$

9.
$$S = C + M$$

 $$250 = C + 30\%($250)$
 $$250 = C + 75
 $$175 = C$

10.
$$S = C + M$$

$$100\%S = \$168 + 30\%(S)$$

$$70\%S = \$168$$

$$.70S = \$168$$

$$\frac{\cancel{50}}{\cancel{70}}S = \frac{\$168}{\cancel{70}}$$

$$S = \$240$$

11.
$$S = C + M$$

 $S = $19.50 + 20\%($19.50)$
 $S = $19.50 + 3.90
 $S = 23.40

12.
$$S = C + M$$

$$$22.50 = 100\%C + 20\%C$$

$$$22.50 = 120\%C$$

$$$22.50 = 1.20C$$

$$\frac{$22.50}{1.20} = \frac{1.20}{1.20}C$$

$$$18.75 = C$$

Unit 6.2 Percent markup

13. a.
$$M = S - C = $72 - $48 = $24$$

b. Percent markup on cost =
$$\frac{M}{C} = \frac{\$24}{\$48} = .50 = 50\%$$

c. Percent markup on selling price =
$$\frac{M}{S} = \frac{$24}{$72} \approx .333 \approx 33.3\%$$

	Percent markup on cost	Percent markup on selling price
14.	40%	$\frac{40\%}{100\% + 40\%} = \frac{40\%}{140\%} = \frac{.40}{1.40} \approx .286 \approx 28.6\%$
15.	25%	$\frac{25\%}{100\% + 25\%} = \frac{25\%}{125\%} = \frac{.25}{1.25} = .20 = 20\%$
16.	$\frac{30\%}{100\% - 30\%} = \frac{30\%}{70\%} = \frac{.30}{.70} \approx .429 \approx 42.9\%$	30%
17.	$\frac{25\%}{100\% - 25\%} = \frac{25\%}{75\%} = \frac{.25}{.75} \approx .333 \approx 33.3\%$	25%

18. Markup =
$$60\%(\$40) = .60(\$40) = \$24$$

19.
$$S = C + M = $40 + $24 = $64$$

20.
$$\frac{60\%}{100\% + 60\%} = \frac{60\%}{160\%} = \frac{.60}{1.60} = .375 = 37.5\%$$

21. Markup =
$$37.5\%(\$64) = .375(\$64) = \$24$$
 (This is the same dollar amount of markup found in Problem 18)

Unit 6.3 Markdown

22. False

24.	Original marked price	\$900
	Dollar markdown: \$900 × 15%	<u>- 135</u>
	Reduced price	\$765

26. Dependable Appliance Company (\$765)

27.	Original marked price	\$500
	Markdown 1: \$500 × 25%	<u>- 125</u>
	Reduced price, after markdown 1	\$375
	Markdown 2: \$375 × 20%	<u>- 75</u>
	Reduced price, after markdown 2	\$300

- **28. Step 1 Find dollar markdown:** \$9,500 \$8,250 = \$1,250
 - Step 2 Find percent markdown: $\frac{$1,250}{$9,500} \approx .132 \approx 13.2\%$
- 29. Step 1 Determine desired sales proceeds from entire stock

$$S = C + M$$

 $S = \$120 + 25\%(\$120)$ $(C = 200 \times \$0.60 = \$120)$
 $S = \$120 + \30
 $S = \$150$

Step 2 Deduct proceeds from products sold at a discount

Desired sales proceeds (from Step 1)	\$150
Less proceeds from those sold at cost: 30 mangos ($200 \times 15\% = 30$) \times \$0.60	<u>- 18</u>
Proceeds required from top-quality mangos	\$132

Step 3 Find original marked price

200 total mangos - 30 sold at cost - 40 discarded (200 \times 20% = 40) = 130 mangos 130 mangos will sell at original marked price, so: $\$132 \div 130 \approx \$1.015 \approx \$1.02$ each (Always round up.)

30. 130 mangos at full price: $130 \times \$1.02$ \$132.60 30 mangos at cost: $30 \times \$0.60$ 18.00 +40 mangos discarded +0.00 Total sales proceeds are slightly more than the 200 \$150.60 \leftarrow desired \$150 because we rounded up the original marked price to \$1.02.

- **31.** Price/cost ratio = $\frac{\text{Price}}{\text{Cost}} = \frac{\$1.02}{\$0.60} = 1.70$
- 32. $\$0.70 \times 1.70 = \1.19 each

Unit 6.4 Break-even analysis

- 33. List price \$620.00 Trade discount: $$620 \times 20\%$ <u>- 124.00</u> Cost \$496.00 34. Cost \$496.00 Markup: \$496 × 45% <u>+223.20</u> Original marked price \$719.20 35. \$496.00 Cost Amount to cover operating expenses: $$496 \times 28\%$ +138.88Break-even price \$634.88
- **36.** Because he sold the table for more than the break-even price (\$634.88), he has a profit: \$710 \$634.88 = \$75.12 profit
- **37.** Because he sold the table for less than the break-even price (\$634.88), but more than cost (\$496), he has an *operating loss*: \$634.88 \$615 = **operating loss of \$19.88**.
- 38. Because he sold the table for less than cost (\$496), he has an absolute loss: \$496 \$440 = absolute loss of \$56

39. Number of units needed =
$$\frac{\text{Fixed costs}}{\text{Selling price per unit - Variable cost per unit}} = \frac{\$5,300}{\$68.50 - \$26.75} = \frac{\$5,300}{\$41.75} = 126.95 = 127 \text{ cutting boards}$$

 40. Revenues: 282 cutting boards × \$68.50
 \$19,317.00

 Less fixed costs
 - 5,300.00

 Less variable costs: 282 × \$26.75
 - 7,543.50

 Projected profit
 \$ 6,473.50

Challenge problems

		Markup			
	Cost	% of cost	Dollar amount	% of selling price	Selling price
41.	\$1,300	40%	\$520		\$1,820
42.	\$180	97.2%	\$175	49.3%	\$355
43.	\$2,550	_	\$850	25%	\$3,400
44.	\$28.50	_	_	30%	\$40.71
45.	\$3,913.04	15%	\$586.96	13.0%	\$4,500
46.	_	20%	_	16.7%	
47.	_	150%	_	60%	_

- **48.** \$165 \$95 = **\$70**
- **49.** $\frac{$70}{$95} \approx .737 \approx 73.7\%$
- 50. $\frac{$70}{$165} \approx .424 \approx 42.4\%$
- 51.
 Original marked price
 \$165.00

 Markdown 1: \$165 × 20%
 33.00

 Reduced price, after markdown 1
 \$132.00

 Markdown 2: \$132 × 15%
 19.80

 Reduced price, after markdown 2
 \$112.20

 Markdown 3: \$112.20 × 10%
 11.22

 Reduced price, after markdown 3
 \$100.98
- **52.** \$100.98 reduced price \$95.00 cost = **\$5.98**

- 53. $\frac{\$5.98}{\$95} \approx .063 \approx 6.3\%$
- **54.** \$165 original marked price \$100.98 reduced price = **\$64.02**
- **55.** $\frac{\$64.02}{\$165}$ = .388 = **38.8**%

- **56.** *M* = *S C* = 4.90 1.25 = 3.65
- Percent markup on cost = $\frac{3.65}{1.25} \approx 2.92 \approx 292\%$
- 57. The 100% markup is based on the \$20 cost. The 50% markdown is based on the \$40 retail price.

 Cost
 \$20.00

 Markup: \$20 × 100%
 ±20.00

 Original marked price
 \$40.00

 Markdown: \$40.00 × 50%
 -20.00

 Reduced price
 \$20.00

- 58. Cost to manufacturer \$192.45 Markup: $$192.45 \times 30\%$ + 57.74 \$250.19 Manufactrer's list price <u>- 37.53</u> \$212.66 Less trade discount: $$250.19 \times 15\%$ Net price to wholesaler <u>- 2.13</u> \$210.53 Less cash discount: $$212.66 \times 1\%$ Net amount due Markup: \$210.53 × 35% + 73.69 Wholesaler's list price \$284.22 Less trade discount: $$284.22 \times 10\%$ 28.42 \$255.80 Net price to retailer <u>- 5.12</u> Less cash discount: $$255.80 \times 2\%$ Net amount due
- Retailer's original marked price: S = C + M S = \$250.68 + 30%S 70%S = \$250.68

S = \$358.11*

- Original marked price
 \$358.11

 Markdown: \$358.11 × 25%
 89.53

 Reduced price
 \$268.58
- *Note: Round intermediate results to the nearest penny (don't use chain calculations).

Practice Test

- 1. S = C + M S = \$525 + 60%(\$525) S = \$525 + \$315S = \$840
- 2. S = C + M \$45 = 100%C + 125%C\$45 = 225%C
- 3. S = C + M\$200 = C + 40%(\$200)

- **4.** M = S C = \$77 \$55 = \$22Percent markup on cost = $\frac{\$22}{\$55}$ = .40 = **40**%
- \$45 = 2.25C $\frac{$45}{2.25} = \frac{$.25}{2.25}C$ \$20 = C

\$200 = C + \$80 **\$120** = C

- 5. $\frac{40\%}{100\% + 40\%} = \frac{40\%}{140\%} = \frac{.40}{1.40} \approx .286 \approx 28.6\%$
- 6. Original marked price \$5,500 Markdown 1: \$5,500 × 10% - 550 Reduced price, after markdown 1 \$4,950 Markdown 2: \$4,950 × 10% - 495 Reduced price, after markdown 2 \$4,455
- 7. Step 1 Find dollar markdown: \$1,200 \$780 = \$420
 - Step 2 Find percent markdown: $\frac{$420}{$1,200}$ = .35 = 35%

8. Step 1 Determine desired sales proceeds from entire stock

$$S = C + M$$

 $S = \$96 + 25\%(\$96)$ $(C = 300 \text{ lb} \times \$0.32 = \$96)$
 $S = \$96 + \24
 $S = \$120$

Step 2 Deduct proceeds from products sold at a discount

Desired sales proceeds (from Step 1) \$120 Less proceeds from those sold at 75% of cost: $75 \text{ lb } (300 \text{ lb} \times 25\% = 75) \times \$0.24 (\$0.32 \text{ cost} \times 75\% = \$0.24)$ - 18Proceeds required from top-quality bananas \$102

Step 3 Find original marked price

300 lb - 75 lb sold at discount - 45 lb discarded (300 lb \times 15% = 45) = 180 lb 180 lb will sell at original marked price, so: $\$102 \div 180 \approx \$0.567 \approx \$0.57$ per pound (Always round *up*.)

Check answer

Total sales proceeds are slightly more than the desired \$120 because we rounded *up* the original marked price to \$0.57.

- **9.** Price/Cost ratio = $\frac{\text{Price}}{\text{Cost}} = \frac{\$157.50}{\$90} = 1.75$
- 10. Break-even price: \$22 + 25%(\$22) = \$22 + \$5.50 = \$27.50

Because the product is sold for more than cost (\$22), but less than the breakeven point (\$27.50), there is an operating loss (\$27.50 - \$24 = \$3.50 operating loss).

11. Number of units needed = $\frac{\text{Fixed costs}}{\text{Selling price per unit - Variable cost per unit}} = \frac{\$4,910}{\$0.06 - \$0.02} = \frac{\$4,910}{\$0.04} = 122,750 \text{ copies}$

Chapter 7 Checking Accounts

Unit 7.1 Checking account balance

1. True

- 2. (c) from bank statement
- 3. (a) debit memo

- 4. (c) from bank statement
- 5. (b) credit memo
- **6.** \$2,450.00 + \$18,422.00 \$17,948.00 = **\$2,924.00**
- 7. False. If your deposit is made late in the day, after the bank teller starts a new day's business, your deposit will be dated with a later date.
- **8**. **(b)** August

24

- **9. B-** As of September 30, the bank does not know about check 474. If that check had been paid by the bank during September, the bank balance would be less.
- **10.** C- As of September 30, you did not know about the service charge; you find out a few days later, when the bank statement arrives. If the service charge had been entered, your checkbook balance would be less.
- 11. C- As of September 30, your checkbook balance does not reflect this automatic withdrawal. If it did, the balance would be \$225 less.
- 12. C- Your checkbook balance does not reflect the transaction. If you had entered the transaction, your checkbook balance would be \$100 less.

- **13. None** As of September 30, both the bank balance and your checkbook balance reflect the correct amount of the deposit. If your checkbook had *not* been corrected during September, a \$50 addition must be made on the checkbook balance side of the reconciliation.
- **14. None** The deposit would appear as an addition to the bank balance side of the *August* reconciliation, but by September 30, the bank balance reflects the deposit.
- 15. B- The bank still does not know about check 457. If check 457 had been paid, the bank balance would be less.
- **16. B+** As of September 30, the bank balance does not reflect this deposit. If the deposit were reflected, the bank balance would be greater.
- 17. C- Your records do not reflect the debit memo. If entered, your balance would be less.
- **18.** C+ As of September 30, you did not know about the interest; you find out a few days later, when the bank statement arrives. If entered, your balance would be greater.
- **19.** C- As of September 30, your checkbook reflects a wrong amount. If the check had been recorded correctly, your balance would be less.
- **20.** Reconciliation Period Ending June 30, 20xx

CHECKBOOK BALANCE			
1. Ending balance in your check register	\$12,434.74		
2. Add:			
June interest	12.51		
Error ck 579	20.00		
3. Subtotal	\$12,467.25		
4. Subtract:			
Check printing charges	82.00		
5. TOTAL	\$12,385.25		

BANK STATEMENT	
1. Ending balance on bank statement	\$13,556.25
2. Add: Outstanding deposits	
June 30	900.00
3. Subtotal	\$14,456.25
4. Subtract: Outstanding checks	
ck 583	220.00
ck 585	1,851.00
5. TOTAL	\$12,385.25

21. Reconciliation Period Ending October 31, 20xx

CHECKBOOK BALANCE								
1. Ending balance in your check register	\$18,837.00							
2. Add:								
October interest	32.18							
Ck 858 error	27.00							
3. Subtotal	\$18,896.18							
4. Subtract:								
Debit memo (October 18)	11.00							
5. TOTAL	\$18,885.18							

	BANK STATEMENT									
1.	Ending balance on bank statement	\$18,443.18								
2.	Add: Outstanding deposits									
	October 31	1,400.00								
3.	Subtotal	\$19,843.18								
4.	Subtract: Outstanding checks									
	ck 844	180.00								
	ck 863	778.00								
5.	TOTAL	\$18,885.18								

Challenge problems

Check			(-)	(+)	
Number	Date	Description of Transaction	Payment/Debit	Deposit/Credit	Balance
	10-5	Open account		700.00	700.00
101	10-8	Friendly Grocery	150.00		550.00
102	10-14	The Car Doctor; car repair	176.00		374.00
	10-15	Paycheck		1,800.00	2,174.00
103	10-15	Security Mortgage Co; mortgage payment	1,322.00		852.00
104	10-29	Friendly Grocery	327.25		524.75
	10-31	Paycheck		1,800.00	2,324.75

23.

BANK STA			Statem	Statement Date:		October 31, 20xx			
Previous Balance:		otal eposits:	\$2,511.32	Total Checks:	\$1,639.00	Other Debits:	\$28.75	Current Balance:	\$843.57
Deposits and ot	her credits:								
Deposit	10-	5	700.00						
Deposit	10-	15	1,800.00						
Interest	10-	31	11.32						
Checks:									
101	10-	9	150.00						
102	10-	17	167.00						
103	10-	19	1,322.00						
Other debits:									
Ck print	ing		28.75						

\$0.00 (previous balance) + \$2,511.32 (total deposits) - \$1,639.00 (total checks) - \$28.75 (other debits) = \$843.57

24. Reconciliation Period Ending October 31, 20xx

CHECKBOOK BALANCE								
1. Ending balance in your check register	\$2,324.75							
2. Add:								
ck 102 (written for \$167, not \$176)	9.00							
October interest	11.32							
3. Subtotal	\$2,345.07							
4. Subtract:								
ck printing charges	28.75							
5. TOTAL	\$2,316.32							

BANK STATEMENT							
1. Ending balance on bank statement	\$843.57						
2. Add: Outstanding deposits							
October 31	1,800.00						
3. Subtotal	\$2,643.57						
4. Subtract: Outstanding checks							
ck 104	327.25						
5. TOTAL	\$2,316.32						

- 25. Step 1 (review outstanding deposits): Determine if the \$1,800 deposit (October 31) has been credited to the account.
 - Step 2 (review outstanding checks): Check 104 has not been outstanding very long.
 - **Step 3 (enter adjustments):** There are three adjustments on the left side of the reconciliation form that must be entered in the checkbook records. (1) \$9 must be added to reflect the correct amount of check 102; (2) October interest of \$11.32 must be added; (3) check printing charges of \$28.75 must be deducted.
- **26.** \$2,324.75 (checkbook balance, before adjustments—see Problem 22) + \$9.00 + \$11.32 \$28.75 = \$2,316.32

Practice Test

- 1. (a) Debit memo. Your checking account balance must be decreased to reflect the correct amount of the deposit.
- **2.** \$482.33 + \$700 + \$145.45 + \$1,200 \$228 \$145.22 \$950 \$45 = **\$1,159.56**
- 3. Reconciliation Period Ending April 30, 20xx

CHECKBOOK BALANCE								
1. Ending balance in your check register	\$5,545.90							
2. Add:								
April interest	18.45							
3. Subtotal	\$5,564.35							
4. Subtract:								
Check printing charges	78.00							
Cash withdrawal April 22	200.00							
5. TOTAL	\$5,286.35							

BANK STATEMENT								
1. Ending balance on bank statement	\$5,466.35							
2. Add: Outstanding deposits								
April 30	650.00							
3. Subtotal	\$6,116.35							
4. Subtract: Outstanding checks								
ck 928	320.00							
ck 930	510.00							
5. TOTAL	\$5,286.35							

- 4. False; you will discover the error when you do your bank reconciliation.
- 5. Add \$9.22 for March interest and deduct \$48.25 for check printing fees.

Chapter 8 Payroll

Unit 8.1 Gross pay: Wages and incentive plans

- 1. False; Some employees are exempt, including many managers and seasonal workers.
- 2. True

3.

Name	M	T	W	Th	F	S	Total hours	Regular hours	Overtime hours	Reg. rate per hour	Overtime rate	Regular pay	Overtime pay	Gross pay
Don Day	8	8	8	10	8	4.5	46.5	40	6.5	8.00	12.00	320.00	78.00	398.00
Joy Erb	8	8	8	8	8	8	48	40	8	8.25	12.375	330.00	99.00	429.00
Bo Hart	8	8	8	8	8	0	40	40	0	7.25	10.875	290.00	0.00	290.00
Thu Ho	8	8	8	10	4	0	38	38	0	8.25	12.375	313.50	0.00	313.50

4. You: $\$1,295 \times 12$ \$15,540.00 Betty: $\$640 \times 24$ \$15,360.00 **Brad:** $\$310 \times 52.14$ weeks **\$16,163.40** Meg: $\$600 \times 26.07$ biweekly periods \$15,642.00

5. 8 cars \times \$150 = **\$1,200**

6. Base salary: 40 hours × \$5.50 \$220.00

Piecework: 32 sleeping bags × \$1.50 \$268.00

7. $100 \times 1.75 \$175 $100 \times 2.00 200 $+144 \times 2.25 +324344 \$699

8. Net sales: \$125,800 - \$2,592 returns = \$123,208

 Commission: $$123,208 \times 3\%$ \$3,696.24

 Less draw: $2 \text{ draws} \times $1,200$ -2,400.00

 Commission still due
 \$1,296.24

9. Salary: 2 × \$800 \$1,600

Commission:

 Net sales: \$128,300 - \$3,400
 \$124,900

 Base amount
 - 80,000

 Overage
 \$ 44,900
 × 3%
 +1,347

 Total earnings
 \$2,947

Unit 8.2 Payroll deductions for employees

- **10. (b)** is true.
- 11. False

12.

	Prior Gros W-4 YTD pay tl			Gross p period su			De	ductions f	rom emplo	oyee's pay			
Employee	form	earnings	1 / .	SS	MED	SS	MED	FIT	SIT	Other	Explain	Total	Net pay
Dan Bevan	M-1	63,750	1,275	1,275	1,275	79.05	18.49	140.19	63.75	50.00	Savings	351.48	923.52
Ashlie Dobbs	S-1	14,580	810	810	810	50.22	11.75	97.58	40.50	_	_	200.05	609.95
Ian Rice	M-3	6,500	1,140	1,140	1,140	70.68	16.53	98.01	57.00	_	_	242.22	897.78
Totals	_	84,830	3,225	3,225	3,225	199.95	46.77	335.78	161.25	50.00	_	793.75	2,431.25

13. False

14. Social Security:

 Limit
 \$110,100

 Prior earnings
 - 108,000

Amount subject to Social Security tax $$2,100 \times 6.2\% = 130.20

Medicare: $$2,400 \times 1.45\% = 34.80

Unit 8.3 Employer taxes and settling up with the IRS

15. True

16. False. Unemployment tax is an expense of employers.

17. \$199.95. American must pay a matching amount; because \$199.95 was withheld from employee's pay, American must pay an additional \$199.95 for Social Security.

18. \$46.77. American must pay a matching amount.

19.

	Prior YTD	Gross pay this	Gross pay this pay	y period subject to
Employee	Earnings	period	FUT	SUT
Dan Bevan	63,750	1,275	0	0
Ashlie Dobbs	14,580	810	0	420
Ian Rice	6,500	1,140	500	1,140
Total	_	3,225	500	1,560

Tax rates $\frac{\times 0.8\%}{\text{Tax}}$ $\frac{\times 2.5\%}{\text{$4.00}}$ \$39.00

20.	Gross pay (from Problem 12)	\$3,225.00
	Employer's share of Social Security tax (from Problem 17)	199.95
	Employer's share of Medicare tax (from Problem 18)	46.77
	FUT (from Problem 19)	4.00
	SUT (from Problem 19)	39.00
	Health insurance premiums: 3 employees × \$100	300.00
	Contribution to employees' retirement plans: \$3,225 × 8%	+ 258.00
	Total payroll expenses	\$4,072.72

21. True

22. True

23. Step 1 $$140,000 \times 92.35\% = $129,290$

Step 2FICA tax on first \$110,000: \$110,000 \times 15.3%\$16,845.30FICA tax on remainder: 2.9%(\$129,290 - \$110,100)+ 556.51Total, rounded\$17,402.00

24. Federal income tax \$17,211
Self-employment FICA tax (from Problem 23) ± 17,402
Total tax liability \$34,613

- 25. Total tax liability (from Problem 24) \$34,613 Amounts already paid to IRS: $4 \times \$9,000$ \$36,000
 - Lee has paid too much to the IRS; he will get a refund of \$1,387 (\$36,000 \$34,613).

Challenge problems

- Base salary: 40 hours \times \$8.50 26. \$340.00 Piecework: $48 \text{ tents} \times \2.50 +120.00 Gross pay \$460.00
- 27. \$460 gross pay \div 40 hours = \$11.50 per hour
- Social Security tax: $$2,500 \times 6.2\% = 155.00 28. Medicare tax: $$2,500 \times 1.45\% = 36.25 Federal income tax:
 - **Step 1** Illustration 8-2, semimonthly: $$158.33 \times 2 = 316.66
 - **Step 2** \$2,500 \$316.66 = \$2,183.34
 - Step 3 Illustration 8-3, Table 3 (semimonthly), married, over \$1,063 but not over \$3,283:

$$72.50 + 15\%(2,183.34 - 1,063) = 72.50 + 15\%(1,120.34) = 72.50 + 168.05 = 240.55$$

State income tax: $$2,500 \times 6.5\% = 162.50

29. \$2,500.00 Gross pay Less deductions:

Social Security tax \$155.00 Medicare tax 36.25 Federal income tax 240.55 162.50 State income tax Savings plan deduction <u>+ 75.00</u>

Total deductions 669.30 Net pay \$1,830.70

- 30. a. Social security tax: Matching amount from Problem 28
 - b. Medicare tax: Matching amount from Problem 28 \$36.25
 - c. FUT:

\$7,000 Limit: Prior year-to-date earnings <u>-5,000</u>

Amount subject to FUT $$2,000 \times 0.8\%$ \$16.00 **d.** SUT: $$2,500 \times 2\%$ \$50.00

31. Amounts owed to IRS Amounts already paid to IRS

Income tax liability	\$16,378	Federal income tax w/h Galey's pay	\$ 4,940
Connie's self-employment tax	+ 7,489	Estimated payments: $4 \times \$4,500$	+18,000
Total tax liability	\$23,867	Total already paid to IRS	\$22,940

\$448.50

Galey and Connie have not paid enough. They owe an additional \$927 (\$23,867 - \$22,940).

Practice Test

1. Overtime hours: 44 total hours - 40 regular hours = 4 overtime hours Overtime rate: \$9.75 regular rate $\times 1.5 = 14.625

> Pay for regular hours: $40 \text{ hours} \times \9.75 Pay for overtime: $4 \text{ hours} \times 14.625 + 58.50 Gross pay for week

Monthly: $$3,500 \times 12$ Monthly: \$3,500 × 12 **Weekly:** \$820 × 52.14 \$42,000.00 2. \$42,754.80

3.	Base salary: 40 hours \times \$7.50	\$300.00
	Piecework: 63 coats × \$2.50	+157.50
	Gross pay	\$457.50

4. Social Security tax:

> Limit \$110,100 Prior earnings <u>-108,200</u>

Amount subject to Social Security tax \$ 1,900 × 6.2% \$117.80 Medicare tax: $$2,200 \times 1.45\%$ + 31.90 Total FICA tax \$149.70

- 5. Step 1 Using Illustration 8-2, weekly: $$73.08 \times 1$$ allowance = \$73.08
 - **Step 2** \$800.00 \$73.08 = \$726.92

Step 3 Using Illustration 8-3, Table 1 (weekly), single person, over \$721 but not over \$1,688:

\$93.60 + 25%(\$726.92 - \$721) = \$93.60 + 25%(\$5.92) = \$93.60 + \$1.48 = \$95.08

6. False

Limit: \$7,000 Prior earnings - 6,400 Amount subject to FUT $$600 \times 0.8\% = 4.80

8. **Step 1** $$105,200 \times 92.35\% = $97,152$ (rounded) **Step 2** FICA tax: \$97,152 × 15.3% = \$14,864 (rounded)

9. Amounts owed to IRS Amounts already paid to IRS

Income tax liability Federal income tax w/h Margie's pay \$13,280 \$ 7,970 Terry's self-employment tax + 4,192 Estimated payments: $4 \times \$2,500$ +10,000\$17,472 Total already paid to IRS Total tax liability \$17,970

Terry and Margie have paid too much. They will get a refund of \$498 (\$17,970 - \$17,472).

Simple and CompoundInterest Chapter 9

Unit 9.1 Computing simple interest and maturity value

- 1. \$10,000 2. 1 year 3. October 1, 2014
- **4.** $I = PRT = \$10,000 \times 8\% \times 1 = \800 **5.** M = P + I = \$10,000 + \$800 = \$10,800
- **6.** $I = PRT = \$10,000 \times 8\% \times \frac{8}{12} = \533.33 M = P + I = \$10,000 + \$533.33 = \$10,533.33
- 7. $I = PRT = \$10,000 \times 8\% \times \frac{14}{12} = \933.33 M = P + I = \$10,000 + \$933.33 = \$10,933.33
- **8.** False. I stands for the dollar amount of interest; R stands for interest rate.
- **9. False**. *T* stands for time, in *years*.

	Date of loan	Date of payment	Number of days
10.	Jan. 11, 2013	Oct. 28, 2013	290 days
11.	July 13, 2013	Feb. 21, 2014	223 days
12.	Dec. 18, 2015	Mar. 23, 2016 (leap year)	96 days

- 11. Number of days left in first year: 365 194 (day number for July 13) = 171 Number of days in next year: Feb. 21 → + 52 223
- 12. Number of days left in first year: 365 352 (day number for Dec. 18) = 13 Number of days in next year: Mar. 23 \rightarrow 82 + 1 (for leap year) = +83 96

	Date of loan	Term	Maturity date	
13.	May 15, 2013	60 days	135 + 60 = 195 → July 14	
14.	Aug. 2, 2013	180 days	214 + 180 = 394; 394 - 365 = 29 → Jan. 29	
15.	Jan. 18, 2016	90 days	18 + 90 = 108 → Apr. 17 (leap year)	

16.
$$I = PRT = \$15,000 \times 13\% \times \frac{90}{360} = \$487.50$$

17.
$$I = PRT = \$15,000 \times 13\% \times \frac{90}{365} = \$480.82$$

18. False

19. False; the law does not apply to business loans, loans over \$25,000 (unless they are secured by real estate), most public utility fees, and student loan programs.

20. True

21.
$$I = PRT = \$25,000 \times 11.5\% \times \frac{120}{365} = \$945.21$$

22.
$$I = PRT = \$25,000 \times 11.5\% \times \frac{89}{365} = \$701.03$$

23.

	Day number	Total payment	Interest	Principal	Balance
	0			_	\$25,000.00
	24	\$8,000.00	\$189.04	\$7,810.96	\$17,189.04
	89	\$17,541.06	\$352.02	\$17,189.04	\$0.00
ſ	Totals	\$25,541.06	\$541.06	\$25,000.00	_

Procedure for payment on day 24

Trocedure for payment off day 2+
$$I = PRT = \$25,000.00 \times 11.5\% \times \frac{24}{365} = \$189.04$$

Principal = \$8,000.00 - \$189.04 = \$7,810.96

Principal =
$$\$8,000.00 - \$189.04 = \$7,810.96$$

Procedure for payment on day 89
$$I = PRT = \$17,189.04 \times 11.5\% \times \frac{65}{365} = \$352.02$$
 (89 days - 24 days = 65 days)
Principal = \\$17,189.04 (previous balance)

Total payment =
$$$352.02 + $17,189.04 = $17,541.06$$

24. Problem 21: **\$945.21** Problem 22: **\$701.03** Problem 23: \$541.06

Unit 9.2 Solving for principal, rate, and time

25.
$$P = \frac{I}{RT}$$
 $R = \frac{I}{PT}$ $T = \frac{I}{PR}$

	I	P	R	T
26.	\$320.83	\$5,000	11%	7 months
27.	\$63.75	\$4,500	8.5%	2 months
28.	2,964.75	\$35,400	16.75%	6 months
29.	\$275	\$2,000	11%	1.25 yrs = 15 months

$$P = \frac{I}{RT} = \frac{\$7}{3\% \times \frac{1}{12}} = \frac{\$7}{.03 \times 1 \div 12} = \frac{\$7}{.0025} = \$2,800$$


Check answer:
$$I = PRT = \$2,800 \times 3\% \times \frac{1}{12} = \$7.00$$

31.

$$T = \frac{I}{PR} = \frac{\$111.70}{\$3.000 \times 9\%} = \frac{\$111.70}{\$270} \approx .4137037$$

Check answer:
$$I = PRT = \$3,000 \times 9\% \times \frac{151}{365} = \$111.70$$

32.

$$R = \frac{I}{PT} = \frac{\$25}{\$200 \times \frac{18}{12}} = \frac{\$25}{\$300} \approx .0833 \approx 8.33\%$$

33. Principal (P) for APR purposes is the amount of money you have use of: \$5,000 - \$100 fee = \$4,900Interest (*I*) for APR purposes is total finance charges:

$$I = PRT = \$5,000 \times 9\% \times \frac{180}{365} = \$221.92$$

Set-up fee $\frac{100.00}{100}$
Total finance charges $\$321.92$

$$R = \frac{I}{PT} = \frac{\$321.92}{\$4,900 \times \frac{180}{365}} \approx \frac{\$321.92}{\$2,416.44} \approx .1332 \approx 13.32\%$$

 $I = PRT = \$3,500 \times 13\% \times \frac{90}{360} = \113.75 34.

$$R = \frac{I}{PT} = \frac{\$113.75}{\$3,500 \times \frac{90}{365}} \approx \frac{\$113.75}{\$863.01} \approx .1318 \approx 13.18\%$$
Even though interest is calculated using a 360-day year, an APR always uses a 365-day year

Interest will be \$40 per week \times 2 weeks = \$80 35.

$$R = \frac{1}{PT} = \frac{\$80}{\$500 \times \frac{14}{26\pi}} \approx \frac{\$80}{\$19.17808219} \approx 4.1714 \approx 417.14\%$$

 $D = MRT = $2,000 \times 15\% \times \frac{60}{360} = 50 36.

Remember, the discount method uses a 360-day year to calculate interest

Proceeds = M - D = \$2,000 - \$50 = \$1,950 (this is money you have use of)

$$R = \frac{I}{PT} = \frac{\$50}{\$1,950 \times \frac{60}{365}} \approx \frac{\$50}{\$320.55} \approx .1560 \approx 15.60\%$$

Even though interest is calculated using a 360-day year, an APR always uses a 365-day year

Unit 9.3 Compound interest

37.
$$\frac{8}{2}$$
 = 4(%)

38.
$$\frac{7}{4} = 1.75(\%)$$

37.
$$\frac{8}{2} = 4(\%)$$
 38. $\frac{7}{4} = 1.75(\%)$ 39. $\frac{7.5}{12} = .625(\%)$

$$M = P + I = $700 + $105 = $805$$

	Interest	Balance
Beginning	_	\$700.00
1 year	\$700 × 5% = \$35.00	\$735.00
2 years	\$735 × 5% = \$36.75	\$771.75
3 years	\$771.75 × 5% = \$38.59	\$810.34

42.

	Interest	Balance
Beginning	_	\$700.00
6 months	\$700 × 2.5% = \$17.50	\$717.50
12 months	\$717.50 × 2.5% = \$17.94	\$735.44
18 months	\$735.44 × 2.5% = \$18.39	\$753.82*
24 months	\$753.82 × 2.5% = \$18.85	\$772.67
30 months	\$772.67 × 2.5% = \$19.32	\$791.99
36 months	\$791.99 × 2.5% = \$19.80	\$811.79

*Note: Without rounding intermediate results, \$735.4375 + \$18.3859375 = \$753.8234375

- 43. George Lavin (Problem 42) ended up with the most. The more often interest is compounded, the more interest is earned.
- 6.125% compounded semiannually. Periodic rate = $\frac{6.125}{2}$ = 3.0625(%): 44.

6 months: \$100 + 3.0625% = \$103.06

 $+3.0625\% = $106.22 \rightarrow APY = 6.22\%$ 12 months:

6% compounded monthly. Periodic rate = $\frac{6}{12}$ = 0.50(%). Tip: Be sure to use chain calculations (don't round intermediate results).

1 months: \$100 + 0.50% = \$100.50

7 months: +0.50% = \$103.55

2 months: +0.50% = \$101.00

8 months: +0.50% = \$104.07

+0.50% = \$101.513 months:

9 months: +0.50% = \$104.59

+0.50% = \$102.024 months:

10 months: +0.50% = \$105.11

5 months: +0.50% = \$102.53 11 months: +0.50% = \$105.64

+ 0.50% = \$103.04 6 months:

12 months: $+0.50\% = $106.17 \implies APY = 6.17\%$

Your bank (6.125% compounded semiannually) provides the greater return (6.22% APY vs. 6.17% APY).

Periodic rate = $\frac{5.75}{2}$ = 2.875(%). *Tip*: Be sure to use chain calculations 45.

(don't round intermediate results).

6 months: \$100 + 2.875% = \$102.88

12 months: +2.875% =

 $105.83 \rightarrow APY = 5.83\%$

Challenge problems

46. Number of days:

Oct. 16 \longrightarrow Day 289 $I = PRT = $285 \times 18\% \times \frac{54}{365} = 7.59 Aug. 23 \longrightarrow Day $\frac{-235}{100}$ M = P + I = \$285 + \$7.59 = \$292.59

Aug. 23 → Day <u>-235</u>

47. Invoice amount

\$2,450

Discount: $$2,450 \times 4\%$ Net amount due

If Alyce fails to pay the invoice within the discount period she is, in effect, borrowing \$2,352 for 20 days and paying an extra \$98 as interest, so:

$$R = \frac{I}{PT} = \frac{\$98}{\$2,352 \times \frac{20}{365}} = \frac{\$98}{\$128.88} \approx .7604 \approx 76.04\%$$

- $R = \frac{I}{PT} = \frac{\$15}{\$150(\frac{30}{365})} \approx \frac{\$15}{\$12.3288} \approx 1.21666 \approx 121.67\%$ 48.
- Number of days left in first year: 365 334 (day number for Nov. 30) = 49. May 4 → + <u>124</u> Number of days in next year:

 $I = PRT = \$845.23 \times 12\% \times \frac{155}{365} = \43.07

- **50.** $$845.23 \times 6\% = 50.71
- **51.** \$845.23 + \$43.07 interest + \$50.71 penalty = **\$939.01**
- **52.** $R = \frac{1}{PT} = \frac{\$43.07 + \$50.71}{\$845.23 \times \frac{155}{365}} \approx \frac{\$93.78}{\$358.93} \approx .2613 \approx 26.13\%$

53. The second bond pays 8.5% compounded annually, resulting in an APY of 8.5%. Let's find the APY for the first bond.

Periodic rate = $\frac{8.35}{2}$ = 4.175(%); using chain calculations:

$$$100 + 4.175\% = $104.18$$

+ $4.175\% = $108.52 \longrightarrow APY = 8.52\%$

The APY for the first bond is 8.52%, greater than the 8.5% provided by the second bond.

54. 10.69% simple interest

$$I = PRT = \$1,000 \times 10.69\% \times 5 = \$534.50$$

 $M = P + I = \$1,000 + \$534.50 = \$1,534.50$

8.75% compounded semiannually

Balance in 6 months: \$1,000 + 4.375% = \$1,043.75 Balance in 12 months: +4.375% =\$1,089.41 Balance in 18 months: + 4.375% = \$1,137.08 Balance in 24 months: + 4.375% = \$1,186.82 Balance in 30 months: + 4.375% = \$1,238.75 Balance in 36 months: + 4.375% = \$1,292.94 Balance in 42 months: +4.375% =\$1,349.51 Balance in 48 months: + 4.375% = \$1,408.55 Balance in 54 months: + 4.375% = \$1,470.17 Balance in 60 months: + 4.375% = \$1,534.49

The ending balances are almost identical, showing that, for a 5-year period, 8.75% compounded semiannually is equivalent to 10.69% simple interest.

Practice Test

1. False. I stands for the dollar amount of interest; R stands for interest rate.

2.
$$I = PRT = \$12,000 \times 9.5\% \times \frac{8}{12} = \$760$$

$$M = P + I = $12,000 + $760 = $12,760$$

- 3. June 22 \rightarrow Day 173 + 120 = 293 \rightarrow Oct. 20
- Number of days left in first year: 365 357 (day number for Dec. 23) Number of days in next year: Apr. $10 \rightarrow 100 + 1$ (for leap year) + 101 109

$$I = PRT = \$1,500 \times 9\% \times \frac{109}{365} = \$40.32$$

5.

Day number	Total payment	Interest	Principal	Balance
0				\$15,000.00
22	\$3,000.00	\$81.37	\$2,918.63	\$12,081.37

$$I = PRT = \$15,000.00 \times 9\% \times \frac{22}{365} = \$81.37$$

Principal = \\$3,000.00 - \\$81.37 = \\$2,918.63

Balance = \$15,000.00 - \$2,918.63 = \$12,081.37

Principal (P) for APR purposes is the amount of money you have use of: \$3,000 - \$100 fee = \$2,900. 6. Interest (I) for APR purposes is total finance charges:

$$I = PRT = \$3,000 \times 7\% \times \frac{90}{360} = \$52.50$$

Set-up fee ± 100.00
Total finance charges $\$152.50$

$$R = \frac{I}{PT} = \frac{\$152.50}{\$2,900 \times \frac{90}{365}} \approx \frac{\$152.50}{\$715.07} \approx .2133 \approx 21.33\%$$
Even though interest is calculated using a 360-day year, an APR always uses a 365-day year

7.
$$D = MRT = \$30,000 \times 13.5\% \times \frac{180}{360} = \$2,025$$

Remember, the discount method uses a 360-day year to calculate interest

Proceeds = M - D = \$30,000 - \$2,025 = \$27,975 (this is amount you have use of)

$$R = \frac{I}{PT} = \frac{\$2,025}{\$27,975 \times \frac{180}{365}} \approx \frac{\$2,025}{\$13,795.89} \approx .1468 \approx 14.68\%$$

8.

	Interest	Balance
Beginning	_	\$500.00
6 months	\$500.00 × 3% = \$15.00	\$515.00
12 months	\$515.00 × 3% = \$15.45	\$530.45
18 months	\$530.45 × 3% = \$15.91	\$546.36
24 months	\$546.36 × 3% = \$16.39	\$562.75

9. Periodic rate =
$$\frac{7.15}{2}$$
 = 3.575(%)

$$$100 + 3.575\% = $103.58 + 3.575\% = $107.28 \longrightarrow APY = 7.28\%$$

Chapter IO Future Value and PresentValue: Using Formulas

Unit 10.1 Time-value-of-money terminology

- 1. 12 (3 years × 4 periods per year)
- **2. 1.5%** $(6\% \div 4 = 1.5\%)$
- 3. \$1,000 (this is the amount that happens at the beginning of the first period)
- **4.** \$50 (this is the amount that happens every period)
- 5. \$1,847.68 (this is the amount that happens at the end of the last period)
- 6. False. PV is \$4,000 because that's the amount that happened at the beginning of the first period.
- 7. No one receives a check for \$1,600, so \$1,600 is not a time-value-of-money variable.
- **8.** \$6,000 (this is the amount that happens at the end of the last period)

Unit 10.2 Future value

9. Formula 1A (
$$n = 170$$
; $i = 4\% = .04$): FV = PV($1 + i$) ^{$n = 42(1.04)^{170} = 33,030.64$}

10. Formula 1B
$$(n = 30; i = 8\% = .08)$$
: FV = PMT $\left[\frac{(1+i)^n - 1}{i}\right] = \$2,000 \left[\frac{(1.08)^{30} - 1}{.08}\right] = \$226,566.42$

11. Formula 1B
$$(n = 40; i = 2\% = .02)$$
: FV = PMT $\left[\frac{(1+i)^n - 1}{i}\right] = \$365 \left[\frac{(1.02)^{40} - 1}{.02}\right] = \$22,046.72$

12. Formula 1B (
$$n = 51 \times 12 = 612$$
; $i = 7.5\% \div 12 = .625\% = .00625$):

FV = PMT
$$\left[\frac{(1+i)^n - 1}{i} \right]$$
 = \$135 $\left[\frac{(1.00625)^{612} - 1}{.00625} \right]$ = \$956,673.97

13. As noted for Formula 1B in Illustration 10-1, if payments are made at the beginning of each period, we multiply by (1 + i):

$$$956,673.97 \times (1+i) = $956,673.97 \times 1.00625) = $962,653.18$$

15.
$$i = 7\% \div 12 \approx .5833333\% \approx .0058333333$$

35: FV = PMT
$$\left[\frac{(1+i)^n - 1}{i} \right]$$
 = \$100 $\left[\frac{(1.005833333)^{120} - 1}{.0058333333} \right]$ = \$17,308.48

45: FV = PMT
$$\left[\frac{(1+i)^n - 1}{i} \right]$$
 = \$100 $\left[\frac{(1.005833333)^{240} - 1}{.0058333333} \right]$ = \$52,092.66

55: FV = PMT
$$\left[\frac{(1+i)^n - 1}{i} \right]$$
 = \$100 $\left[\frac{(1.005833333)^{360} - 1}{.005833333} \right]$ = \$121,997.09

65: FV = PMT
$$\left[\frac{(1+i)^n - 1}{i} \right]$$
 = \$100 $\left[\frac{(1.005833333)^{480} - 1}{.0058333333} \right]$ = \$262,481.31

16. Formula 1A (
$$n = 100$$
; $i = 12\% = .12$): FV = PV($1 + i$) ^{$n = 100$} = \$500(1.12) ^{$n = 100$} = \$41,761,132.86

17. Formula 1A (
$$n = 18$$
; $i = 5\% = .05$): FV = PV(1 + i) ^{$n = 18$} = \$2,550(1.05) ^{$18 = 18$} = \$6,136.88

18. Formula 1A (n = 40; i = -5% = -.05)

$$FV = PV(1 + i)^n = FV = 4,400 (1 + (-0.05))^{40} = 4,400 (0.95)^{40} = 565.45 = about 565 elephants$$

Unit 10.3 Present value

19. Formula 2A (
$$n = 10$$
; $i = 3\% = .03$): PV = $\frac{FV}{(1+i)^n} = \frac{\$5,000}{(1.03)^{10}} = \$3,720.47$

20. Formula 2B ($n = 4 \times 4 = 16$; $i = 6\% \div 4 = 1.5\% = .015$):

PV = PMT
$$\left[\frac{1 - \frac{1}{(1+i)^n}}{i} \right]$$
 = 600,000 euros $\left[\frac{1 - \frac{1}{(1.015)^{16}}}{.015} \right]$ = 8,478,758.43 euros

- **21.** $180 \times \$1,300 = \$234,000$
- 22. No; you need to find the present value of the money saved.
- **23.** Formula 2B ($n = 15 \times 12 = 180$; $i = 9\% \div 12 = .75\% = .0075$):

PV = PMT
$$\left[\begin{array}{c} 1 - \frac{1}{(1+i)^n} \\ \hline i \end{array} \right] = \$1,300 \left[\begin{array}{c} 1 - \frac{1}{(1.0075)^{180}} \\ \hline 0.0075 \end{array} \right] = \$128,171.43$$

- **24.** No; the value of the device (\$128,171.43) is less than its \$150,000 cost.
- **25.** $100 \times \$700 = \$70,000$
- **26.** Formula 2B (n = 100; $i = 6\% \div 12 = 0.5\% = .005$):

PV = PMT
$$\left[\frac{1 - \frac{1}{(1+i)^n}}{i} \right] = \$700 \left[\frac{1 - \frac{1}{(1.005)^{100}}}{.005} \right] = \$54,979.85$$

27. Let's look at this from the standpoint of an investor who might buy your bond. Let's find the PV of the interest checks (using Formula 2B), then the PV of the maturity value (using Formula 2A). $n = 13 \times 2 = 26$; $i = 8\% \div 2 = 4\% = .04$:

PV of interest checks: PV = PMT
$$\left[\frac{1 - \frac{1}{(1+i)^n}}{i} \right] = \$30 \left[\frac{1 - \frac{1}{(1.04)^{26}}}{.04} \right] = \$479.48$$

PV of maturity value:
$$PV = \frac{FV}{(1+i)^n} = \frac{\$1,000}{(1.04)^{26}} = \frac{\$360.69}{(1.04)^{26}}$$

28. The bond is worth less than \$1,000 because the 6% rate is less than the 8% prevailing rate that investors can earn.

29. Formula 2A (
$$n = 20$$
, $i = 8\% = .08$): PV = $\frac{FV}{(1+i)^n} = \frac{\$1,000}{(1.08)^{20}} = \$214.55$

30. Formula 2B
$$(n = 6; i = 9\% \div 12 = .75\% = .0075)$$
: PV = PMT $\left[\frac{1 - \frac{1}{(1+i)^n}}{i} \right] = \$700 \left[\frac{1 - \frac{1}{(1.0075)^6}}{.0075} \right] = \$4,091.92$

Adjust (payments at beginning of each month): $\$4,091.92 \times 1.0075 = \$4,122.61$

Challenge problems

31. What \$5,800 will grow to. Formula 1A ($n = 5 \times 2 = 10$; $i = 8\% \div 2 = 4\% = .04$):

$$FV = PV(1+i)^n = \$5,800(1.04)^{10} = \$8,585.42$$

What \$100 each 6 months will grow to. Formula 1B:

$$FV = PMT \left[\frac{(1+i)^n - 1}{i} \right] = \$100 \left[\frac{(1.04)^{10} - 1}{.04} \right] = \frac{\pm 1,200.61}{.04}$$

Total FV \$9,786.03

- 32. $$45,000 \times 7.65\% = $3,442.50$
- **33.** \$3,442.50 (employee share) + \$3,442.50 (employer share) = \$6,885
- **34.** $$6,885 \div 4 = $1,721.25$
- **35.** Formula 1B ($n = 40 \times 4 = 160$; $i = 7\% \div 4 = 1.75\% = .0175$):

FV = PMT
$$\left[\frac{(1+i)^n - 1}{i} \right]$$
 = \$1,721.25 $\left[\frac{(1.0175)^{160} - 1}{.0175} \right]$ = \$1,480,390.69

36. Formula 2B ($n = 28 \times 12 = 336$; $i = 9\% \div 12 = .75\% = .0075$):

PV = PMT
$$\left[\frac{1 - \frac{1}{(1+i)^n}}{i} \right]$$
 = \$25,000 $\left[\frac{1 - \frac{1}{(1.0075)^{336}}}{.0075} \right]$ = \$3,062,600.87

37. You will receive the net amount of \$5,500 at the beginning of each month. Let's find PV using Formula 2B, assuming payments are made at the *end* of each month. Then, as indicated in Illustration 10-1, we will multiply the result by (1 + i). $(n = 20 \times 12 = 240; i = 9\% \div 12 = .75\% = .0075)$:

PV = PMT
$$\left[\begin{array}{c} 1 - \frac{1}{(1+i)^n} \\ \hline i \end{array} \right] = \$5,500 \left[\begin{array}{c} 1 - \frac{1}{(1.0075)^{240}} \\ \hline 0.0075 \end{array} \right] = \$611,297.25$$

Because payments are made at the beginning of each period: $$611,297.25 \times 1.0075 = $615,881.98$

Your leasehold interest is worth \$615,881.98; the paragraph in the lease that allows you to sublease the space is very valuable to you and is very costly to the landlord.

38. Formula 2B
$$(n = 10; i = 8\% = .08)$$
: PV = PMT $\left[\begin{array}{c} 1 - \frac{1}{(1+i)^n} \\ \hline i \end{array} \right] = \$500,000 \left[\begin{array}{c} 1 - \frac{1}{(1.08)^{10}} \\ \hline .08 \end{array} \right] = \$3,355,040.70$

39. Formula 1B
$$(n = 10; i = 8\% = .08)$$
: FV = PMT $\left[\frac{(1+i)^n - 1}{i}\right]$ = \$500,000 $\left[\frac{(1.08)^{10} - 1}{.08}\right]$ = \$7,243,281.23

40. Find what \$750 per quarter will accumulate to. Formula 1B ($n = 25 \times 4 = 100$; $i = 6\% \div 4 = 1.5\% = .015$):

FV = PMT
$$\left[\frac{(1+i)^n - 1}{i} \right]$$
 = \$750 $\left[\frac{(1.015)^{100} - 1}{.015} \right]$ = \$171,602.28

Now find what \$171,602.28 will grow to over 10 years. Formula 1A ($n = 10 \times 4 = 40$; $i = 6\% \div 4 = 1.5\% = .015$):

$$FV = PV(1 + i)^n = \$171,602.28(1.015)^{40} = \$311,289.69$$

41. $(40 \times \$6,000) + (20 \times \$9,000) = \$420,000$

- 42. No; must compare the present value of Michael's offer with the \$240,000 cash offer.
- **43. Step 1.** Find the PV of the \$6,000 quarterly payments. Formula 2B ($n = 10 \times 4 = 40$; $i = 8\% \div 4 = 2\% = .02$):

PV = PMT
$$\left[\begin{array}{c} 1 - \frac{1}{(1+i)^n} \\ \hline i \end{array} \right] = \$6,000 \left[\begin{array}{c} 1 - \frac{1}{(1.02)^{40}} \\ \hline 0.02 \end{array} \right] = \$164,132.88$$

Step 2. Find the PV of the \$9,000 quarterly payments. Formula 2B ($n = 5 \times 4 = 20$; $i = 8\% \div 4 = 2\% = .02$):

PV = PMT
$$\left[\frac{1 - \frac{1}{(1+i)^n}}{i} \right]$$
 = \$9,000 $\left[\frac{1 - \frac{1}{(1.02)^{20}}}{.02} \right]$ = \$147,162.90

Step 3. The amount found in Step 2 (\$147,162.90) is the PV *at the beginning of that stream of payments*—namely 10 years from now. Let's find the PV of \$147,162.90 to be received 10 years from now. We will use Formula 2A ($n = 10 \times 4 = 40$; $i = 8\% \div 4 = 2\% = .02$):

$$PV = \frac{FV}{(1+i)^n} = \frac{\$147,162.90}{(1.02)^{40}} = \$66,648.67$$

- **Step 4.** The present value of the first stream of payments (\$6,000 per quarter for 10 years) is \$164,132.88. The present value (as of today) of the second stream of payments (\$9,000 per quarter for 5 years) is \$66,648.67. The present value of all of the cash flows is: \$164,132.88 + \$66,648.67 = \$230,781.55.
- **44. Florence should accept Ishiro's offer**, because his \$240,000 cash offer is better than Michael's offer, which has a present value of \$230,781.55.

Practice Test

- 1. n = 5 years \times 4 periods per year = 20
- 2. \$420 (this is the amount that happened at the beginning of the first period)
- 3. $FV = PV(1 + i)^n = $500(1.12)^{50} = $144,501.09$
- **4.** Formula 1B ($n = 50 \times 12 = 600$; $i = 6.75\% \div 12 = .5625\% = .005625$):

FV = PMT
$$\left[\frac{(1+i)^n - 1}{i} \right]$$
 = \$100 $\left[\frac{(1.005625)^{600} - 1}{.005625} \right]$ = \$496,875.02

- 5. Formula 1A (n = 18; i = 4% = .04): FV = PV(1 + i)^{$n = $3,800(1.04)^{18} = $7,698.10$}
- **6.** Formula 2A (n = 20; i = 8% = .08): PV = $\frac{\text{FV}}{(1+i)^n} = \frac{\$1,000}{(1.08)^{20}} = \$214.55$
- 7. $n = 12 \times 12 = 144$; $i = 9.75\% \div 12 = .8125\% = .008125$, so:

PV of annual savings (Formula 2B): PV = PMT
$$\left[\frac{1 - \frac{1}{(1+i)^n}}{i} \right] = \$800 \left[\frac{1 - \frac{1}{(1.008125)^{144}}}{0.008125} \right] = \$67,757.52$$

PV of salvage value (Formula 2A):
$$PV = \frac{FV}{(1+i)^n} = \frac{\$8,000}{(1.008125)^{144}} = \frac{\$2,494.70}{(1.008125)^{144}}$$

Chapter I I SinkingFunds, Annuities, and More: Using Formulas

Unit 11.1 Sinking funds

1. Formula 2A (
$$n = 6.5 \times 4 = 26$$
; $i = 8\% \div 4 = 2\% = .02$): PV = $\frac{FV}{(1+i)^n} = \frac{\$50,000}{(1.02)^{26}} = \$29,878.96$

2. Formula 4A (
$$n = 6.5 \times 4 = 26$$
; $i = 8\% \div 4 = 2\% = .02$): PMT = $\frac{\text{FV (i)}}{(1+i)^n - 1} = \frac{\$50,000 (.02)}{(1.02)^{26} - 1} = \$1,484.96$

3. Formula 4A (
$$n = 4.5 \times 4 = 18$$
; $i = 3\% \div 4 = .75\% = .0075$): PMT = $\frac{\text{FV (i)}}{(1+i)^n - 1} = \frac{\$40,000 (.0075)}{(1.0075)^{18} - 1} = \$2,083.91$

4.
$$I = PRT = £86,500,000 \times 6\% \times 1 = £5,190,000$$

5. Formula 4A (
$$n = 20$$
; $i = 8\% = .08$): PMT = $\frac{\text{FV (i)}}{(1+i)^n - 1} = \frac{\text{£86,500,000 (.08)}}{(1.08)^{20} - 1} = \text{£1,890,216.06}$

7. First, let's determine how many months it will take. Using Formula 5 (
$$i = 8\% \div 12 \approx .66667\% \approx .0066667$$
):

$$n = \frac{-\ln\left[\frac{\text{PV} + \left(\frac{\text{PMT}}{i}\right)}{\frac{\text{PMT}}{i} - \text{FV}}\right]}{\ln(1+i)} = \frac{-\ln\left[\frac{\$0 + \left(\frac{-\$180}{.0066667}\right)}{\frac{-\$180}{.0066667} - \$1,000,000}\right]}{\ln(1.0066667)} = 547.60 \text{ months} = 45.63 \text{ years}$$

28 years (Kristi's age now) + 45.63 years = **73.63 years old**

Unit 11.2 Annuities

8.
$$I = PRT = \$500,000 \times 6.75\% \times \frac{1}{12} = \$2,812.50$$

9. Formula 4B (
$$n = 40 \times 12 = 480$$
; $i = 6.75\% \div 12 = .5625\% = .005625$):

PMT =
$$\frac{\text{PV (i)}}{1 - \frac{1}{(1 + i)^n}} = \frac{\$500,000 (.005625)}{1 - \frac{1}{(1.005625)^{480}}} = \$3,016.78$$

10. Formula 4B (
$$n = 30 \times 12 = 360$$
; $i = 6.75\% \div 12 = .5625\% = .005625$):

PMT =
$$\frac{\text{PV}(i)}{1 - \frac{1}{(1+i)^n}} = \frac{\$500,000 (.005625)}{1 - \frac{1}{(1.005625)^{360}}} = \$3,242.99$$

11. Using the right-hand column of Ill. 10-1:
$$\$3,242.99 \div (1+i) = \$3,242.99 \div 1.005625 = \$3,224.85$$

12. Formula 4B (
$$n = 150$$
; $i = 5.5\% = .055$): PMT = $\frac{\text{PV}(i)}{1 - \frac{1}{(1 + i)^n}} = \frac{\$4,000,000 (.055)}{1 - \frac{1}{(1.055)^{150}}} = \$220,071.56$

Adjust because distributions are at the beginning of each year: $$220,071.56 \div 1.055 = $208,598.64$

Unit 11.3 Loan payments

13. Formula 4B (
$$n = 6 \times 12 = 72$$
; $i = 6.5\% \div 12 \approx .541667\% \approx .00541667$):

PMT =
$$\frac{\text{PV (i)}}{1 - \frac{1}{(1 + i)^n}} = \frac{\$27,500 (.00541667)}{1 - \frac{1}{(1.00541667)^{72}}} = \$462.27$$

15. Formula 4B (
$$n = 24$$
; $i = 1.75\% = .0175$): PMT = $\frac{\text{PV (i)}}{1 - \frac{1}{(1 + i)^n}} = \frac{\$900 \, (.0175)}{1 - \frac{1}{(1.0175)^{24}}} = \46.25

16. 15-year (
$$i = 7.25\% \div 12 \approx .604167\% \approx .0064167$$
): PMT = $\frac{\text{PV }(i)}{1 - \frac{1}{(1+i)^n}} = \frac{\$150,000 (.00604167)}{1 - \frac{1}{(1.00604167)^{180}}} = \$1,369.29$

30-year (
$$i = 7.5\% \div 12 = .625\% = .00625$$
): PMT = $\frac{PV(i)}{1 - \frac{1}{(1+i)^n}} = \frac{\$150,000 (.00625)}{1 - \frac{1}{(1.00625)^{360}}} = \$1,048.82$

18. 15-year loan:
$$180 \times \$1,369.29 = \$246,472.20$$
; $\$246,472.20 - \$150,000 = \$96,472.20$ 30-year loan: $360 \times \$1,048.82 = \$377,575.20$; $\$377,575.20 - \$150,000 = \$227,575.20$

20.
$$n = 20 \times 12 = 240$$
; $i = 8.875\% \div 12 \approx .7395833\% \approx .007395833$

PMT =
$$\frac{\text{PV}(i)}{1 - \frac{1}{(1+i)^n}} = \frac{\$365,000 (.007395833)}{1 - \frac{1}{(1.007395833)^{240}}} = \$3,254.71$$

21. We will use Formula 5. PV = \$138,743.03; $i = 8.75\% \div 12 \approx .729167\% \approx .00729167$. Because the PMT is *paid*, it is a negative number.

$$n = \frac{-\ln\left[\frac{\text{PV} + \left(\frac{\text{PMT}}{i}\right)}{\frac{\text{PMT}}{i} - \text{FV}}\right]}{\ln(1+i)} = \frac{-\ln\left[\frac{\$138,743.03 + \left(\frac{-\$1,180.05}{.00729167}\right)}{\frac{-\$1,180.05}{.00729167} - \$0}\right]}{\ln(1.00729167)} = 268.00 \text{ months} (22 \text{ years and 4 months})$$

Unit 11.4 Solving for rate (i)

22.
$$i = \left(\frac{\text{FV}}{\text{PV}}\right)^{\frac{1}{n}} - 1 = \left(\frac{\$520,000}{\$4,000}\right)^{\frac{1}{200}} - 1 = .0246 = \textbf{2.46}\%$$

23.
$$i = \left(\frac{\text{FV}}{\text{PV}}\right)^{\frac{1}{n}} - 1 = \left(\frac{\$165,000}{\$2,450}\right)^{\frac{1}{62}} - 1 = .0703 = 7.03\%$$

24.
$$i = \left(\frac{FV}{PV}\right)^{\frac{1}{n}} - 1 = \left(\frac{30.6}{9.9}\right)^{\frac{1}{50}} - 1 = .0228 = 2.28\%$$
 $i = \left(\frac{FV}{PV}\right)^{\frac{1}{n}} - 1 = \left(\frac{100}{30.6}\right)^{\frac{1}{20}} - 1 = .0610 = 6.10\%$ $i = \left(\frac{FV}{PV}\right)^{\frac{1}{n}} - 1 = \left(\frac{226.4}{100}\right)^{\frac{1}{28}} - 1 = .0325 = 3.25\%$

25.
$$i = \left(\frac{\text{FV}}{\text{PV}}\right)^{\frac{1}{n}} - 1 = \left(\frac{\$532,500}{\$750}\right)^{\frac{1}{14}} - 1 = .5983 = 59.83\%$$

26.
$$i = \left(\frac{FV}{PV}\right)^{\frac{1}{n}} - 1 = \left(\frac{$23,000}{$15,600}\right)^{\frac{1}{12}} - 1 = .0329 = 3.29\%$$

No; your salary has increased 3.29% per year, which is less than the average annual inflation rate.

27. Formulas are not designed to solve for i when periodic payments are involved. Let's use the Guess and Check Method. One approach would be to find the present value of the cash flows using different rates, until a rate results in a present value of \$1,200 (the price paid for the stock). Let's try 14%:

PV of dividends: PV = PMT
$$\left[\frac{1 - \frac{1}{(1+i)^n}}{i} \right] = \$50 \left[\frac{1 - \frac{1}{(1.14)^{12}}}{.14} \right] = \$283.01$$
PV of sales proceeds: PV = $\frac{FV}{(1+i)^n} = \frac{\$4,200}{(1.14)^{12}} = \frac{\$4,200}{(1.14)^{12}} = \$1,154.76$
Total PV

The PV of \$1,154.76 is fairly close to our \$1,200 target figure, but is a bit too low. When calculating present value, reducing the rate increases the present value, so we need try a lower rate. Let's try 13.5%:

PV of dividends: PV = PV = PMT
$$\left[\frac{1 - \frac{1}{(1+i)^n}}{i} \right] = \$50 \left[\frac{1 - \frac{1}{(1.135)^{12}}}{.135} \right] = \$289.33$$

PV of sales proceeds: PV = $\frac{FV}{(1+i)^n} = \frac{\$4,200}{(1.135)^{12}} = \frac{\$4,200}{(1.135)^{12}} = \$1,208.30$

We are getting very close. The rate needs to be just a bit higher. Let's try 13.58%:

PV of dividends: PV = PV = PMT
$$\left[\frac{1 - \frac{1}{(1+i)^n}}{i} \right] = \$50 \left[\frac{1 - \frac{1}{(1.1358)^{12}}}{.1358} \right] = \$288.31$$

PV of sales proceeds: PV = $\frac{FV}{(1+i)^n} = \frac{\$4,200}{(1.1358)^{12}} = \frac{\$4,200}{(1.1358)^{12}} = \$1,199.54$

A rate of 13.58% results in a present value of \$1,199.54, which is very close to our target figure of \$1,200. You earned approximately 13.58%, compounded annually.

Challenge problems

- **28.** I = PRT = \$650,000 × 6% × $\frac{1}{12}$ = \$3,250
- 29. The savings plan balance will increase because the interest you earn is greater than the amount you withdraw.
- What \$650,000 will grow to: Formula 1A ($n = 40 \times 12 = 480$; $i = 6\% \div 12 = .5\% = .005$): 30.

$$FV = PV(1+i)^n = \$650,000(1.005)^{480} = \$7,122,344.89$$

Decrease in FV because of the \$3,000 monthly withdrawal:

Formula 1B (
$$n = 480$$
; $i = .005$): FV = PMT $\left[\frac{(1+i)^n - 1}{i} \right] = \$3,000 \left[\frac{(1.005)^{480} - 1}{.005} \right] = \frac{-5,974,472.20}{\$1,147,872.69}$

(In spite of making hefty withdrawals, the balance has increased from \$650,000 to \$1,147,872.69.)

31. Formula 5 ($i = 6\% \div 12 = .5\% = .005$; PV = negative \$650,000; PMT = \$3,500; FV = 0):

$$n = \frac{-\ln\left[\frac{\text{PV} + \left(\frac{\text{PMT}}{i}\right)}{\frac{\text{PMT}}{i} - \text{FV}}\right]}{\ln(1+i)} = \frac{-\ln\left[\frac{-\$650,000 + \left(\frac{\$3,500}{.005}\right)}{\frac{\$3,500}{.005} - \$0}\right]}{\ln(1.005)} = 529.13 \text{ months (44.09 years)}$$

32. Formula 2A (
$$n = 2.5 \times 12 = 30$$
; $i = 6\% \div 12 = 0.5\% = .005$): PV = $\frac{FV}{(1+i)^n} = \frac{\$8,000}{(1.005)^{30}} = \$6,888.24$

\$1,154.76

33. Formula 4A (
$$n = 2.5 \times 12 = 30$$
; $i = 6\% \div 12 = 0.5\% = .005$): PMT = $\frac{\text{FV}(i)}{(1+i)^n - 1} = \frac{\$8,000 (.005)}{(1.005)^{30} - 1} = \247.83

34. What \$2,400 will grow to (Formula 1A): $FV = PV(1+i)^n = \$2,400(1.005)^{30} = \$2,787.36$

Additional FV required: \$8,000 - \$2,787.36 = \$5,212.64

PMT needed to accumulate \$5,212.64 (Formula 4A): PMT =
$$\frac{\text{FV (i)}}{(1+i)^n - 1} = \frac{\$5,212.64 (.005)}{(1.005)^{30} - 1} = \$161.48$$

35. Note: 35.9 cents, written in terms of dollars, is \$0.359, so:
$$i = \left(\frac{\text{FV}}{\text{PV}}\right)^{\frac{1}{n}} - 1 = \left(\frac{\$4.399}{\$0.359}\right)^{\frac{1}{35}} - 1 = .0742 = 7.42\%$$

36. Formula 2B ($n = 30 \times 12 = 360$; $i = 6.75\% \div 12 = .5625\% = .005625$):

PV = PMT
$$\left[\begin{array}{c} 1 - \frac{1}{(1+i)^n} \\ \hline i \end{array}\right] = \$1,100 \left[\begin{array}{c} 1 - \frac{1}{(1.005625)^{360}} \\ \hline 0.005625 \end{array}\right] = \$169,596.55$$

37. First, let's find the amount needed at the start of the 30-year withdrawal stage. We need to know PV and we know PMT, so we use Formula 2B ($n = 30 \times 12 = 360$; $i = 6\% \div 12 = .5\% = .005$):

$$PV = PMT \left[\begin{array}{c} 1 - \frac{1}{(1+i)^n} \\ \hline i \end{array} \right] = \$2,000 \left[\begin{array}{c} 1 - \frac{1}{(1.005)^{360}} \\ \hline 0.005 \end{array} \right] = \$333,583.23$$

Now, let's find the amount Jacob needs to deposit at the end of each month over the next 35 years to accumulate the \$333,583.23. We need to know PMT and we know FV, so we use Formula 4A ($n = 35 \times 12 = 420$):

PMT =
$$\frac{\text{FV (i)}}{(1+i)^n - 1} = \frac{\$333,583,23 (.005)}{(1.005)^{420} - 1} = \$234.14$$

39. Projected tuition, 8 years from now: $FV = PV(1 + i)^n = \$6,000(1.04)^8 = \$8,211.41$ Amount needed in fund 8 years from now (assuming withdrawals are at the *end* of each year):

PV = PMT
$$\left[\begin{array}{c} 1 - \frac{1}{(1+i)^n} \\ \hline i \end{array} \right] = \$8,211.41 \left[\begin{array}{c} 1 - \frac{1}{(1.06)^4} \\ \hline .06 \end{array} \right] = \$28,453.40$$

Adjust, because withdrawals are at *beginning* of each year: \$28,453.40 (rounded) $\times 1.06 = $30,160.60$ Amount to be deposited at the end of each year to accumulate \$30,160.60 in 8 years:

PMT =
$$\frac{\text{FV}(i)}{(1+i)^n - 1} = \frac{\$30,160.60(.06)}{(1.06)^8 - 1} = \$3,047.30$$

Practice Test

1. First, figure the required deposit assuming deposits are made at the end of each month.

Formula 4A (
$$n = 18 \times 12 = 216$$
; $i = 6\% \div 12 = .5\% = .005$): PMT = $\frac{\text{FV }(i)}{(1+i)^n - 1} = \frac{\$35,000 (.005)}{(1.005)^{216} - 1} = \90.36

We need to adjust the answer because deposits are made at the *beginning* of each period. You can deposit less because the plan starts earning interest sooner. So, we *divide* the answer by (1 + i):

$$$90.36 \div (1+i) = $90.36 \div 1.005 = $89.91$$

2. Formula 5 ($i = 6\% \div 12 = .5\% = .005$; PV = negative \$5,500; PMT = negative \$400; FV = \$22,000):

$$n = \frac{-\ln\left[\frac{\text{PV} + \left(\frac{\text{PMT}}{i}\right)}{\frac{\text{PMT}}{i} - \text{FV}}\right]}{\ln(1+i)} = \frac{-\ln\left[\frac{-\$5,500 + \left(\frac{-\$400}{.005}\right)}{\frac{-\$400}{.005} - \$22,000}\right]}{\ln(1.005)} = 35.38 \text{ months}$$

3. Formula 4B ($n = 30 \times 12 = 360$; $i = 6.5\% \div 12 \approx .5416667\% \approx .005416667$):

$$PMT = \frac{PV(i)}{1 - \frac{1}{(1 + i)^n}} = \frac{\$250,000 (.005416667)}{1 - \frac{1}{(1.005416667)^{360}}} = \$1,580.17$$

4. Formula 4B ($n = 4 \times 12 = 48$; $i = 6.5\% \div 12 \approx .5416667\% \approx .005416667$):

$$PMT = \frac{PV(i)}{1 - \frac{1}{(1+i)^n}} = \frac{\$13,500 (.005416667)}{1 - \frac{1}{(1.005416667)^{48}}} = \$320.15$$

5. Formula 4B ($n = 30 \times 12 = 360$; $i = 6.75\% \div 12 = .5625\% = .005625$):

$$PMT = \frac{PV(i)}{1 - \frac{1}{(1 + i)^n}} = \frac{\$240,000 (.005625)}{1 - \frac{1}{(1.005625)^{360}}} = \$1,556.64$$

Total interest: $(360 \times \$1,556.64) - \$240,000 = \$560,390.40 - 240,000.00 = \$320,390.40$

6. Formula 3 (
$$n = 10$$
; FV = \$165,000; PV = \$108,000): $i = \left(\frac{\text{FV}}{\text{PV}}\right)^{\frac{1}{n}} - 1 = \left(\frac{\$165,000}{\$108,000}\right)^{\frac{1}{10}} - 1 = .0433 = 4.33\%$

Chapter 12 Future Value and Present Value: Using Financial Calculators

Unit 12.1 Time-value-of-money terminology

- 1. 12 (3 years \times 4 periods per year = 12)
- **2.** 1.5% (6% ÷ 4 = 1.5%)
- 3. \$1,000 (this is the amount that happens at the beginning of the first period)
- **4.** \$50 (this is the amount that happens every period)
- **5.** \$1,847.68 (this is the amount that happens at the end of the last period)
- 6. False. PV is \$4,000 because that's the amount that happened at the beginning of the first period.
- 7. No one receives a check for \$1,600, so \$1,600 is not a time-value-of-money variable.
- **8.** \$6,000 (this is the amount that happens at the end of the last period)

Unit 12.2 Financial calculators

- **9.** We should clear the TVM registers if the upcoming problem is an entirely new problem. If the upcoming problem is merely a variation of the preceding problem, it is easier to not clear the registers and instead change the values that are different.
- **10.** By using this approach, we don't have to change the "periods per year" setting from problem to problem; we must, however, enter the *periodic rate* in the *i-register*.
- 11. False. We can review the values by pressing [RCL] [N], [RCL] [PV], etc.
- 12. False. Values can be entered in any order.
- 13. **3**
- 14. True
- **15. False.** You do not make a payment of \$600, so you should *not* enter \$600 in the PMT register. Instead, you should enter \$100 (actually, negative \$100) in the PMT register.

Unit 12.3 Future value

16.	N	i	PV	PMT	FV
	170	4	-42		33,030.64

17.	N	i	PV	PMT	FV
	30	8		-2,000	226,566.42

20. Change to "begin" mode. Then solve for FV (it is not necessary to re-enter amounts). Answer is \$962,653.18. *Suggestion*: After getting the answer, don't forget to put calculator back in "end" mode.

 21.
 Ending balance
 \$962,653.18

 Total amount deposited: 612 x \$135 =
 - 82,620.00

 Interest earned
 \$880,033.18

22.	N	i	PV	PMT	FV
	10 × 12 = 120	$7 \div 12 = 0.583$		-100	17,308.48
	20 × 12 = 240	1		1	52,092.67
	$30 \times 12 = 360$	1		↑	121,997.10
	40 × 12 = 480	↑		1	262,481.34

23.	N	i	PV	PMT	FV
	100	12	-500		41,761,132.86

24.	N	i	PV	PMT	FV
	18	5	-2,550		6,136.88

25.	N	i	PV	PMT	FV
	40	-5	-4,400		565.45

There will be about **565 elephants**.

Unit 12.4 Present value

26.	N	i	PV	PMT	FV
	10	3	-3,720.47		5,000

27.	N	i	PV	PMT	FV
	4 × 4 = 16	6 ÷ 4 = 1.5	-8,478,758.43 euros	600,000	

28. $180 \times \$1,300 = \$234,000$

29. No; you need to find the *present value* of the money saved.

44 Chapter 12 Future Value and Present Value: Using Financial Calculators

30.

N	i	PV	PMT	FV
$15 \times 12 = 180$	9 ÷ 12 = 0.75	-128,171.43	1,300	

- 31. No; the value of the device (\$128,171.43) is less than its \$150,000 cost.
- 32. $100 \times \$700 = \$70,000$

33.

N	i	PV	PMT	FV
100	6 ÷ 12 = 0.50	-54,979.85	700	

34. Let's look at this from the standpoint of an investor who wants to earn 8% compounded semiannually. The investor would receive interest checks of \$30 each 6 months for 13 years, plus the \$1,000 maturity value in 13 years.

N	i	PV	PMT	FV
$13 \times 2 = 26$	8 ÷ 2 = 4	-840.17	30	1,000

35. The bond is worth less than \$1,000 because the 6% rate is less than the 8% prevailing rate that investors can earn.

36.

N	i	PV	PMT	FV
20	8	-214.55		1,000

37.

N	i	PV	PMT	FV
6	$9 \div 12 = 0.75$	4,122.61	-700 Begin*	

^{*}Note: Don't forget to put back in "end" mode.

Challenge problems

38.

N	i	PV	PMT	FV
$5 \times 2 = 10$	$8 \div 2 = 4$	-5,800	-100	9,786.03

- **39.** \$45,000 × 7.65% = \$3,442.50
- **40.** \$3,442.50 (employee share) + \$3,442.50 (employer share) = \$6,885
- 41. $\$6,885 \div 4 = \$1,721.25$

42.

N	i	PV	PMT	FV
$40 \times 4 = 160$	$7 \div 4 = 1.75$		-1,721.25	1,480,390.69

43.

N	i	PV	PMT	FV
$28 \times 12 = 336$	9 ÷ 12 = 0.75	3,062,600.87	-25,000	

44.

N	i	PV	PMT	FV
20 × 12 = 240	9 ÷ 12 = 0.75	-615,881.98	5,500 Begin*	

^{*}*Note*: You collect \$27,500 per month and pay \$22,000, keeping the difference of \$5,500 at the beginning of each month. Don't forget to put your calculator back in "end" mode.

Your leasehold interest is worth \$615,881.98; the paragraph in the lease that allows you to sublease the space is very valuable to you and is very costly to the landlord.

45.

N	i	PV	PMT	FV
10	8	-3,355,040.70	500,000	

46.

N	i	PV	PMT	FV
↑	↑	0	-500,000	7,243,281.23

47. First, let's find what \$750 per quarter will accumulate to.

N	i	PV	PMT	FV
$25 \times 4 = 100$	6 ÷ 4 = 1.5		-750	171,602.28

Now, let's find what the \$171,602.28 will grow to over the final 10 years.

N	i	PV	PMT	FV
$10 \times 4 = 40$	↑	-171,602.28	0	311,289.69

^{*}Note: Answer assumes we round the FV amount, from Step 1, to the nearest penny before entering in the PV register.

Practice Test

- 1. n = 5 years \times 4 periods per year = 20
- **2.** \$420 (this is the amount that happened at the beginning of the first period)

3.	N	i	PV	PMT	FV
	50	12	-500		144,501.09

4.	N	i	PV	PMT	FV
	50 × 12 = 600	$6.75 \div 12 = 0.5625$		-100	496,875.02

5.	N	i	PV	PMT	FV
	18	4	-3,800		7,698.10

6.	N	i	PV	PMT	FV
	20	8	-214.55		1,000

7.	N	i	PV	PMT	FV
	12 × 12 = 144	$9.75 \div 12 = 0.8125$	-70,252.22	800	8,000

Chapter 13 SinkingFunds, Annuities, and More: Using Financial Calculators

Unit 13.1 Sinking funds

1.	N	i	PV	PMT	FV
	$6.5 \times 4 = 26$	$8 \div 4 = 2$	-29,878.96		50,000

2.	N	i	PV	PMT	FV
	1	↑	0	-1,484.96	^

3.	N	i	PV	PMT	FV
	1	1	-4,700	-1,251.38	50,000

4.	N	i	PV	PMT	FV
	4.5 × 4 = 18	$3 \div 4 = 0.75$		-2,083.91	40,000

5.
$$I = PRT = £86,500,000 \times 6\% \times 1 = £5,190,000$$

6.	N	i	PV	PMT	FV
	20	8		-1,890,216.06	86,500,000

- 7. £5,190,000 (interest to bondholders) + £1,890,216.06 (sinking fund deposit) = £7,080,216.06
- 8. First, let's determine how many months it will take. Then, we will figure her age.

N	i	PV	PMT	FV
547.60	8 ÷ 12 = 0. <u>66</u>		-180	1,000,000

 $547.60 \text{ months} \div 12 = 45.63 \text{ years}. 28 \text{ years (Kristi's age now)} + 45.63 \text{ years} = 73.63 (73 \text{ years old})$

Unit 13.2 Annuities

9. $I = PRT = \$500,000 \times 6.75\% \times \frac{1}{12} = \$2,812.50$

10.	N	i	PV	PMT	FV
	40 × 12 = 480	$6.75 \div 12 = 0.5625$	-500,000	3,016.78	0

•	N	i	PV	PMT	FV
	30 × 12 = 360	↑	↑	3,242.99	0

12.	N	i	PV	PMT	FV
	290.14 months	1	↑	3,500	0

 $290.14 \text{ months} \div 12 = 24.18 \text{ years}$

13. It will increase because the withdrawals are less than the interest you earn.

14.	N	i	PV	PMT	FV
	25 × 12 = 300	↑	↑	2,700	587,608.96

15.	N	i	PV	PMT	FV
	150	5.5	-4,000,000	208,598.64 Begin*	

^{*}Note: Don't forget to put back in "end" mode.

Unit 13.3 Loan payments

16.	N	i	PV	PMT	FV
	$6 \times 12 = 72$	$6.5 \div 12 = 0.541\underline{6}$	27,500	-462.27	

17. 72 × \$462.27 = \$33,283.44; \$33,283.44 - 27,500.00 = \$5,783.44

18.	N	i	PV	PMT	FV
	24	1.75*	900	-46.25	

^{*}Note: The periodic rate is 1.75(%), not $1.75 \div 12$.

19.	N	i	PV	PMT	FV
	15 × 12 = 180	$7.25 \div 12 = 0.6041\underline{6}$	150,000	-1,369.29	
	30 × 12 = 360	$7.5 \div 12 = 0.625$	^	-1,048.82	

- **20.** \$1,369.29 \$1,048.82 = **\$320.47**
- 21. 15-year loan: $180 \times \$1,369.29 = \$246,472.20$; \$246,472.20 \$150,000 = \$96,472.20 30-year loan: $360 \times \$1,048.82 = \$377,575.20$; \$377,575.20 \$150,000 = \$227,575.20
- **22.** \$227,575.20 \$96,472.20 = **\$131,103**

23.	N	i	PV	PMT	FV
	20 × 12 = 240	4.875 ÷ 12 = 0.40625*	365,000	-2,383.71	

^{*}Note: We can find the decimal equivalent of $\frac{7}{8}$ by dividing 7 by 8, getting 0.875. So, $4\frac{7}{8}$ = 4.875.

24.	N	i	PV	PMT	FV
	268.00 months	$8.75 \div 12 = 0.7291\underline{6}$	138,743.03	-1,180.05	

25.	N	i	PV	PMT	FV
	261.22 months	↑	↑	-1,190.05	
	215.03 months	↑	1	-1,280.05	

Challenge problems

26.	N	i	PV	PMT	FV
	5	4	-400,000		486,661.16

27.	N	i	PV	PMT	FV
	5 × 4 = 20	6 ÷ 4 = 1.5	0	-20,735.00 Begin*	1

^{*}Note: Don't forget to put back in "end" mode.

28.	N	i	PV	PMT	FV
	165.34 months	$8 \div 12 = 0.\underline{66}$	500	-5	

29.	N	i	PV	PMT	FV
	61.02 months	↑	↑	-10	

30. No. The extra \$5 a month applies entirely to principal, reducing the balance more quickly.

31.	N	i	PV	PMT	FV
	54 months	$11 \div 12 = 0.91\underline{6}$	13,841.90	-326.14	

32.

N	i	PV	PMT	FV
49.87 months	^	13,007.90*	1	

^{*}Note: \$13,841.90 - \$834 extra principal = \$13,007.90

The loan term will be reduced by 4.13 months (54 months before making the extra payment - 49.87 months = 4.13 months).

33.

a.	Rebate
h	2.9%

N	i	PV	PMT	FV
5 × 12 = 60	$8.5 \div 12 = 0.7083$	22,000*	-451.36	
1	2.9 ÷ 12 = 0.241 <u>6</u>	25,500	-457.07	

^{*}Note: \$25,500 - \$3,500 rebate = \$22,000

34.

N	i	PV	PMT	FV
$30 \times 12 = 360$	$4.75 \div 12 = 0.39583$	172,530.35	-900	

First, let's find the amount needed at the start of the 30-year withdrawal stage. 35.

N	i	PV	PMT	FV
$30 \times 12 = 360$	$6 \div 12 = 0.50$	-333,583.23	2,000	

Now, let's find the amount Jacob needs to deposit at the end of each month over the next 35 years to accumulate the \$333,583.23.

	N	i	PV	PMT	FV
3	$35 \times 12 = 420$	↑	0	-234.14	333,583.23

By depositing \$234.14 at the end of each month over the next 35 years, Jacob will be able to withdraw \$2,000 at the end of each month for the following 30 years.

36. Total amount to be received: $360 \times \$2,000 =$

Total amount to be deposited: $420 \times $234.14 =$

Interest earned

\$720,000.00

- 98,338.80

\$621,661.20

37. Projected tuition, 8 years from now:

N	i	PV	PMT	FV
8	4	-6,000		8,211.41

Amount needed in fund 8 years from now:

N	i	PV	PMT	FV
4	6	-30,160.61	8,211.41 Begin*	

^{*}Note: Don't forget to put your calculator back in "end" mode.

Amount to be deposited at the end of each year to accumulate \$30,160.61 in 8 years:

N	i	PV	PMT	FV
8	6		-3,047.31	30,160.61

Practice Test

1.

	N	i	PV	PMT	FV
18 × 1	12 = 216	$6 \div 12 = 0.50$		-89.91 Begin*	35,000

^{*}Note: Don't forget to put your calculator back in "end" mode.

2.	N	i	PV	PMT	FV
	35.38 months	6 ÷ 12 = 0.50	-5,500	-400	22,000

3.	N	i	PV	PMT	FV
	30 × 12 = 360	$6.5 \div 12 = 0.541\underline{6}$	-250,000	1,580.17	

4.	N	i	PV	PMT	FV
	4 × 12 = 48	$6.5 \div 12 = 0.541\underline{6}$	13,500	-320.15	

5.	N	i	PV	PMT	FV
	20 × 12 = 240	$7.625 \div 12 = 0.63541\underline{6}$	140,000	-1,138.56	

6.	N	i	PV	PMT	FV
	40 × 12 = 480	$7.25 \div 12 = 0.6041\underline{6}$	180,000	-1,151.41	

Total interest: $(480 \times \$1,151.41) - \$180,000 = \$552,676.80 - \$180,000 = \$372,676.80$

Chapter 14 InstallmentLoans and Open-EndCredit

Unit 14.1 Cost of installment buying

- 1. (c) greater than \$177.08. If Maria's credit union charged no interest, her monthly payment would be \$177.08 (\$8,500 ÷ 48 = \$177.08); with interest, her payment will be more than \$177.08.
- **2. (b) greater than 6.5%**, because the \$50 fee is just like interest, paid in advance, which has the effect of increasing the interest rate.

3.	Price of car	\$28,500
	Tax and license fees	1,700
	Origination fee	+ 300
	Total amount needed	\$30,500
	Less down payment	<u>- 3,000</u>
	Required loan	\$27,500

4.	Step 1	Total of all payments: 48 × \$664.92	\$31,916.16
	Step 2	Less loan amount	<u>-27,500.00</u>
	_	Interest portion of payments	\$ 4,416.16
	Step 3	Plus prepaid loan costs	+ 300.00
	_	Total finance charges	\$ 4,716.16
		_	

5.	Step 1	Cost of the purchase: \$28,500 + \$1,700 tax and license	\$30,200.00
	Step 2	Add finance charges (from Problem 2)	<u>+ 4,716.16</u>
		Total cost, including finance charges	\$34,916.16

6. Cost of the purchase: \$6,200 + \$500.00 tax and license \$6,700.00

Finance charge

Total of all payments: $24 \times 235.18 \$5,644.32 Less loan amount -5,200.00

Interest portion of payments 444.32
Total cost, including finance charges \$7,144.32

If you paid cash (without needing a loan), your total cost would be \$6,700. But since you get a loan, you must pay \$444.32 of interest, pushing your toal cost to \$7,144.32.

Unit 14.2 Paying off an installment loan

- 7. False. Because interest is figured on the unpaid balance, interest decreases as the loan balance goes down.
- **8.** False. A 365-day year is used.
- 9. (d)
- 10. Days in June: 30 - 12 = 18 June has 30 days; not charged interest on first 12 days Days in July <u>+16</u> 34 days
- 11.

Due date	Date received	Total payment	Interest	Principal	Balance
July 1	(Start)	_	_	_	\$1,000.00
Aug. 1	July 28	\$254.71	\$6.66	\$248.05	\$751.95
Sep. 1	Aug. 29	\$254.71	\$5.93	\$248.78	\$503.17
Oct. 1	Sep. 27	\$254.71	\$3.60	\$251.11	\$252.06
Nov. 1	Nov. 1	\$254.24	\$2.18	\$252.06	\$0.00

Procedure for August 1 payment

Number of days: 28 - 1 = 27

Interest: $I = PRT = \$1,000 \times 9\% \times \frac{27}{365} = \6.66 Principal: \$254.71 - \$6.66 = \$248.05New balance: \$1,000 - \$248.05 = \$751.95

Procedure for November 1 payment

Number of days: 3 days in Sep. + 31 days in Oct. + 1 day in Nov. = 35

Interest: $I = PRT = \$252.06 \times 9\% \times \frac{35}{365} = \2.18

Principal: \$252.06 (previous balance) Total payment: \$2.18 + \$252.06 = \$254.24

12.

Due date	Date received	Total payment	Interest	Principal	Balance
Oct. 1	Oct. 1	_			\$2,182.64
_	Oct. 27	\$2,203.63	\$20.99	\$2,182.64	\$0.00

Procedure for October 27 payment

Number of days: 27 - 1 = 26

Interest: $I = PRT = \$2,182.64 \times 13.5\% \times \frac{26}{365} = \20.99

Principal: \$2,182.64 (previous balance)

Total payment: \$20.99 + \$2,182.64 = \$2,203.63

Unit 14.3 Open-end credit

- a. $\frac{13}{12} \approx 1.083333(\%)$ b. $\frac{13}{365} \approx 0.035616(\%)$ 13.
- 14. Let's convert the 1.75% periodic rate to an annual rate: $1.75 \times 12 = 21.00$ So, the 15.9% rate is lower.

15.

Charge card statement: July 10					
Date	Item	Amount	New balance		
6/11	Previous balance brought forward		\$420		
6/18	Charge	\$50	\$470		
6/24	Payment	\$150 Credit	\$320		
6/30	Charge	\$80	\$400		
7/5	Charge	\$40	\$440		

Number of days		Balance		Subtotal
7 (June 11, 12, 13, 14, 15, 16, 17)	×	\$420	=	\$ 2,940
6 (June 18, 19, 20, 21, 22, 23)	×	470	=	2,820
6 (June 24, 25, 26, 27, 28, 29)	×	320	=	1,920
5 (June 30, July 1, 2, 3, 4)	×	400	=	2,000
<u>+ 6</u> (July 5, 6, 7, 8, 9, 10)	×	440	=	<u>+ 2,640</u>
30				\$12,320

Average daily balance = $\frac{\$12,320}{30}$ = \\$410.67

- **16.** \$410.67 (average daily balance) $\times 1.25\% = 5.13
- 17. Daily periodic rate: $\frac{8.75}{365} \approx 0.02397260(\%)$

Interest = $$48,700 \times 0.02397260\% \times 31 = 361.91

Challenge problems

18. \$8,300 (price of car) + \$550 (tax & license fees) + \$50 (processing fee) - \$700 (cash) = \$8,200

19.	Total of all payments: $36 \times $247.61 =$	\$ 8,913.96
	Less loan amount	<u>- 8,200.00</u>
	Interest portion of payments	\$ 713.96
	Plus prepaid loan costs	+ 50.00
	Total finance charges	\$ 763.96

20. Cost of the purchase: \$8,300 + \$550 \$ 8,850.00 Add finance charge (from Problem 19) + 763.96 Total cost, including finance charges \$9,613.96

21.

Due Date	Date Received	Total Payment	Interest	Principal	Balance
Sep. 8	(Start)	_	_	_	\$8,200.00
Oct. 8	Oct. 6	\$247.61	\$34.60	\$213.01	\$7,986.99
Nov. 8	Nov. 10	\$300.00	\$42.12	\$257.88	\$7,729.11

Procedure for October 8 payment

Number of days: 22 days in Sep. (30 - 8 = 22) + 6 days in Oct. = 28 Interest: $I = PRT = \$8,200 \times 5.5\% \times \frac{28}{365} = \34.60 Principal: \$247.61 - \$34.60 = \$213.01

Balance: \$8,200 - \$213.01 = \$7,986.99

Procedure for November 8 payment

Number of days: 25 days in Oct. (31 - 6 = 25) + 10 days in Nov. = 35 Interest: $I = PRT = \$7,986.99 \times 5.5\% \times \frac{35}{365} = \42.12

Principal: \$300 - \$42.12 = \$257.88Balance: \$7,986.99 - \$257.88 = \$7,729.11

22.

Due date	Date received	Total payment	Interest	Principal	Balance
Apr. 8	Apr. 8	_	_		\$418.22
_	May 3	\$419.80	\$1.58	\$418.22	\$0.00

Procedure for May 3 payment

Number of days: 22 days in Apr. (30 - 8 = 22) + 3 days in May = 25

Interest: $I = PRT = \$418.22 \times 5.5\% \times \frac{25}{365} = \1.58

Principal: \$418.22 (previous balance) Total payment: \$1.58 + \$418.22 = \$419.80

Practice Test

1. Finance charge

Step 1	Total of all payments: 60 × \$386.66	\$23,199.60
Step 2	Less loan amount	<u>- 20,000.00</u>
	Interest portion of payments	\$ 3,199.60
Total co	est	
Sten 1	Cost of the purchase: \$22,200 + \$1,500 tax and license	\$23,700,00

Step 2 Add finance charge (above) +3,199.60Total cost \$26,899.60

2. Interest is calculated through the date payment is received by the lender—August 7. Using the days-in-month method: 26 days in July (31 - 5) + 7 days in August = 33 days.

3.

Due date	Date received	Total payment	Interest	Principal	Balance
Nov. 18	(Start)	_	_		\$2,400.00
Dec. 18	Dec. 16	\$100.00	\$18.41	\$81.59	\$2,318.41

Procedure

Number of days: 12 days in Nov. (30 - 18 = 12) + 16 days in Dec. = 28

Interest: $I = PRT = \$2,400 \times 10\% \times \frac{28}{365} = \18.41

Principal: \$100 - \$18.41 = \$81.59

New balance: \$2,400 - \$81.59 = \$2,318.41

4.

Due date	Date received	Total payment	Interest	Principal	Balance
	May 24	_			\$1,489.23
_	June 2	\$1,492.13	\$2.90	\$1,489.23	\$0.00

Procedure

Number of days: 7 days in May (31 - 24 = 7) + 2 days in Jun. = 9 Interest: $I = PRT = \$1,489.23 \times 7.9\% \times \frac{9}{365} = \2.90

Principal: \$1,489.23 (previous balance) Total payment: \$2.90 + \$1,489.23 = \$1,492.13

5. Daily periodic rate: $\frac{8.5}{365} \approx 0.02328767(\%)$

Interest = $$92,817 \times 0.02328767\% \times 30 = 648.45

Chapter 15 Home Ownershipand Mortgage Loans

Unit 15.1 Home ownership and mortgage payments

- 1. False; your home is real estate, not personal property.
- 2. True
- 3. The first lender gets \$123,200; the second lender gets \$16,800.
- 4. The first lender gets \$123,200; the second lender gets \$24,400; Nash gets the remaining \$7,400.
- 5. False
- **6. Step 1** Monthly gross income: \$3,600 + \$1,300 = \$4,900.00
 - **Step 2** Use the front-end ratio (29%):

a. Amount available for housing costs: \$4,900 × 29%	\$1,421.00
b. Subtract monthly property taxes and insurance: (\$1,700 + \$575) ÷ 12	<u>- 189.58</u>
c. Amount available for monthly payment	\$1,231.42

Step 3 Use the back-end ratio (41%):

a. Amount available for housing costs and consumer debt: $$4,900 \times 41\%$	\$2,009.00
b. Subtract monthly property taxes and insurance (see above)	- 189.58
c. Subtract consumer debt: \$295 + \$20 + \$20	<u>- 335.00</u>
d. Amount available for monthly payment	\$1,484.42

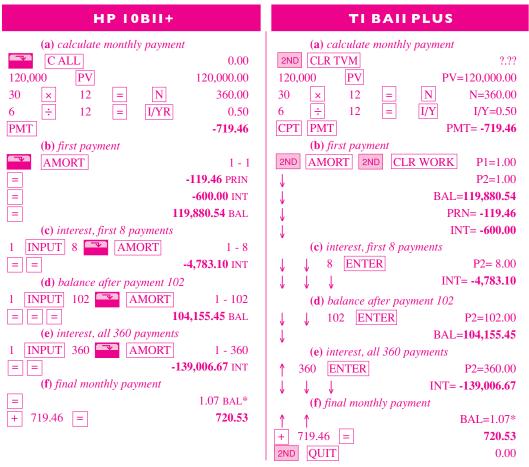
Step 4 Using the front-end ratio, their maximum monthly payment is \$1,231.42. Using the back-end ratio, the maximum monthly payment is \$1,484.42. Their maximum monthly payment is the lesser of the two: **\$1,231.42**.

- 7. Total amount to be repaid: $360 \times \$1,074.62$ \$386,863.20 Subtract principal portion (loan amount) -150,000.00 Interest portion of payments \$236,863.20
- 8. $(\$1,725 + \$575) \div 12 = \$2,300 \div 12 = \191.67
- **9.** \$1,074.62 (PI) + \$191.67 (TI) = **\$1,266.29** (PITI)
- 10. Yes. If taxes or insurance change, the TI portion of the payment changes, resulting in a change in the total (PITI) payment

Unit 15.2 Paying off a mortgage loan and increasing equity

11. The TI portion of the payment does not apply to the debt.

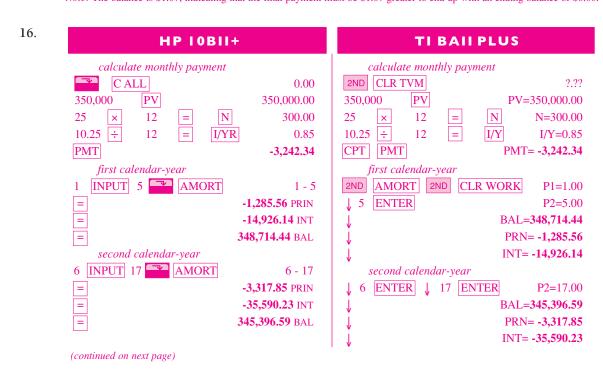
Payment number	Payment (PI)	Interest	Principal	Balance
New loan				\$150,000.00
1	\$1,074.62	\$968.75	\$105.87	\$149,894.13
2	\$1,074.62	\$968.07	\$106.55	\$149,787.58


Payment 1 Interest:
$$I = PRT = \$150,000 \times 7.75\% \times \frac{1}{12} = \$968.75$$

Principal = $\$1,074.62 - \$968.75 = \$105.87$
Balance = $\$150,000 - \$105.87 = \$149,894.13$

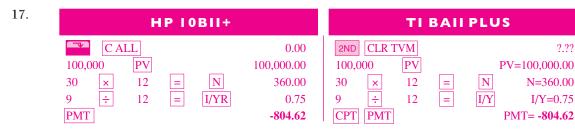
Payment 2 Interest:
$$I = PRT = \$149,894.13 \times 7.75\% \times \frac{1}{12} = \$968.07$$

Principal = $\$1,074.62 - \$968.07 = \$106.55$
Balance = $\$149,894.13 - \$106.55 = \$149,787.58$

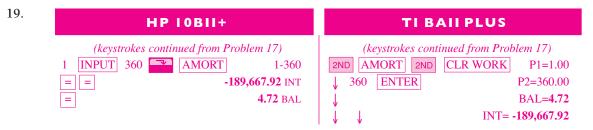

- 12. True
- 13. False. If an amortization schedule were printed for a car loan, it would soon be worthless, because interest is figured to the date payment is received, and payments are often made a few days early or a few days late.
- **14.** \$315,000 \$147,300 = **\$167,700**

Unit 15.3 Amortization with a financial calculator

15. Be sure to set decimal at 2 places when amortizing. And give your calculator ample time between keystrokes (look at your display after pressing each key).


Note: The balance is \$1.07, indicating that the final payment must be \$1.07 greater to end up with an ending balance of \$0.00.

55



Note: For the second calendar-year, there were 12 payments. Because the next series of payments (the third calendar-year) also includes 12 payments, we don't have to tell the calculator the beginning and ending payment numbers.

Note: Don't clear registers; Problems 19-23 are a continuation.

Note: Don't clear registers; Problems 21-23 are a continuation.

20. There is a difference of \$4.72. The answer to Problem 19 (\$189,667.92) is the correct answer. The answer to Problem 18 (\$189,663.20) is based on making 360 payments of \$804.62. As shown in Problem 19, the unpaid balance after making 360 payments of \$804.62 is \$4.72, so the final payment must be increased \$4.72 (to \$809.34) to end up with a zero balance.

Note: Don't clear registers; Problem 23 is a continuation.

22. Interest is figured on the unpaid balance. Because the balance is greater during the first half of the loan, interest is higher. So principal is lower during the first half, resulting in slow reduction during the first half.

56

23. How many months will be left on the loan when the balance is half repaid?

HP I	OBII+	TI BA	AII PLUS
(keystrokes continue	ed from Problem 21)	(keystrokes conti	nued from Problem 21)
50,000 PV	50,000.00	2ND QUIT	0.00
N	83.98	50,000 PV	PV=50,000.00
		CPT N	N= 83.98

24. 360 months - 83.98 months left (see Problem 23) ≈ 276 months elapsed; 276 months ÷ 12 = 23 years. It will take about 23 years for the loan to be half repaid.

Unit 15.4 Repayment variations and loan charges

- **25.** 6.10% + 0.50% = 6.60%. However, because of the 1% annual cap, the rate will be 5.50% + 1% = 6.50%.
- **26. It increases** with the increase in the interest rate.
- **27.** $I = PRT = \$340,000 \times 9.75\% \times \frac{1}{12} = \$2,762.50.$
- 28. \$340,000; the balance remains unchanged because payments cover interest, but no principal.
- **29.** Interest: $I = PRT = \$225,000 \times 7\% \times \frac{1}{12} = \$1,312.50$ Principal: \$1,100 total paid \$1,312.50 = negative \$212.50(Notice, the \$1,100 monthly payment is not enough to cover interest, so the balance will *increase*.)
 Balance: \$225,000 + \$212.50 = \$225,212.50 (This is a negative amortization loan.)
- 30. Maximum total balances allowed: $$265,000 \times 75\% = $198,750$ Less current loan balances
 Available lin e of credit $$265,000 \times 75\% = $198,750$
- 31. True.
- **32.** $\$700,000 \times 1\frac{1}{4}\% = \$700,000 \times 1.25\% = \$8,750$
- **33.** $(\$320,000 \times 0.5\%) + (\$320,000 \times 0.75\%) + \$750 + \$70 + \$700 + \$970 + \$400 + \$200 + \$95 = \$7,185$
- 34. True.

Challenge problems

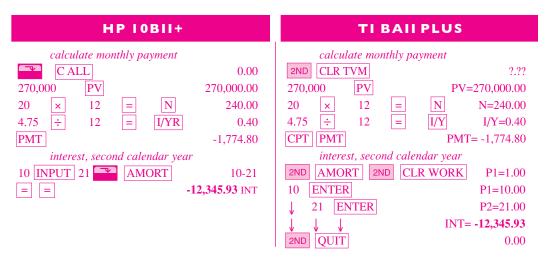
- 35. Monthly income: \$1,250 + \$1,100 + \$760 + \$10 monthly interest = \$3,120

 Amount available for housing costs: \$3,120 ¥ 30% \$936.00

 Subtract monthly property taxes and insurance: (\$975 + \$490) ÷ 12 −122.08

 Amount available for mortgage payment \$813.92
- 36. Amount available for housing costs and consumer debt: \$3,120 ¥ 41%
 Subtract monthly property taxes and insurance (see above)
 Subtract consumer debt: \$110 + \$30 + \$10 + \$45
 Amount available for mortgage payment
 \$962.12
- **37.** Using the front-end ratio, their maximum payment is \$813.92. Using the back-end ratio, the maximum payment is \$965.12. Their maximum payment is the lesser of the two: **\$813.92**.
- 38. PI \$714.65 TI: (\$948 + \$520) ÷ 12 = +122.33 PITI \$836.98
- 39. Initial deposit into escrow account
 Add monthly deposits: 7 × \$122.33 = +856.31
 Less property taxes paid -948.00
 Ending escrow balance \$178.31
- **40.** $I = PRT = \$115,000 \times 7\% \times \frac{1}{12} = \670.83 Principal = \$714.65 (PI portion of payment) - \$670.83 = \$43.82 Balance = \$115,000 - \$43.82 = \$114,956.18

- **41.** \$142,000 (value) \$112,581 (first mortgage) \$18,300 (second mortgage) = \$11,119
- 42. The first lender gets the first \$116,100; the second lender gets the remaining \$18,400. Mort and Carla get nothing.


43.	Selling price	\$180,000
	Balance, first mortgage	- 108,434
	Balance, second mortgage	- 4,500
	Commission: \$180,000 × 6%	- 10,800
	Other selling expenses	<u>- 2,200</u>
	Net proceeds	\$ 54,066

Practice Test

1. Monthly gross income: \$4,550 + \$5,200 = \$9,750

Amount available for housing costs and consumer debt: \$9,750 ¥ 41%	\$3,997.50
Subtract monthly property taxes and insurance: (\$2,780 + \$750) ÷ 12	- 294.17
Subtract consumer debt: \$391 + \$275 + \$318 + \$1,350 + \$25 + \$25	<u>-2,384.00</u>
Amount available for monthly payment	\$1,319.33

- 2. $I = PRT = \$105,000 \times 6.5\% \times \frac{1}{12} = \568.75 Principal: \$663.67 - \$568.75 = \$94.92Balance: \$105,000 + \$94.92 = \$104,905.08
- 3. PI \$ 872.55 TI: (\$1,325 + \$710) ÷ 12 \$ + 169.58 PITI \$1,042.13
- 4. The first calendar year, you make 9monthly payments. For calendar-year 2, you make payments 10-21.

- **5.** For year 2, your rate will be the 5% T-bill rate $+\frac{1}{2}$ %, or 5.5%. For year 3, the rate could be the 6.25% T-bill rate $+\frac{1}{2}$ %, or 6.75%; however, because of the annual cap, your rate is limited to **6.5%** (5.5% rate for year 2 + 1% annual cap).
- **6.** $$174,500 \times 80\% = $139,600; $139,600 $103,200 = $36,400$
- **7.** (\$170,000 × 0.5%) + (\$170,000 × 0.875%) + \$70 + \$475 + \$630 + \$400 + \$125 + \$70 = \$850 + \$1,487.50 + \$70 + \$475 + \$630 + \$400 + \$125 + \$70 = \$4,107.50

Chapter 16 Stocks, Bonds, and Mutual Funds

Unit 16.1 Stocks

1. False

2. False. Preferred stockholders are paid before common stockholders but after creditors.

3. Total dividends \$1,575,000
Dividends for preferred stock: \$400,000 last year + \$600,000 this year -1,000,000
Dividends available to common stockholders \$575,000

Dividends per share of common stock: $$575,000 \div 1,150,000 \text{ shares} = 0.50 Your dividend: 75 shares \times \$0.50 per share = \$37.50

- 4. False. Commissions vary, depending on the services the stockbroker provides.
- 5. False. The largest stock exchange in the United States is the New York Stock Exchange.
- 6. True

7.	52 w	reeks			PE	Vol		Net
	Hi	Lo	Div	Yld%	Ratio	100s	Close	Chg
	92.13	78.25	1.40	1.6	27	352	86.56	-0.63

- a. \$92.13 per share
- b. \$78.25 per share
- c. \$86.56 per share
- d. Decreased \$0.63 per share
- e. **35,200** shares (352 × 100 = 35,200)
- f. 1.40 (amount in "Div" column) \div 86.56 (amount in "Close" column) \approx .0162 \approx 1.62%
- **g**· PE = $\frac{P}{E} = \frac{\$86.56}{\$3.21} \approx 26.97 \approx 27$
- 8. $(100 \text{ shares} \times \$38.50) + \$80 = \$3,850 + \$80 = \$3,930$
- 9. $(100 \text{ shares} \times \$46) \$120 = \$4,600 \$120 = \$4,480$

10.	Company	Price per share	Earnings per share	PE ratio
	A	\$65.00	\$8.13	8.00
	В	\$65.00	\$5.91	11.00
	С	\$65.00	\$2.22	29.28

- 11. If we owned stock in Company A, our share of earnings would be \$8.13 for each share of stock we owned. Someone willing to pay \$65 for a share of stock would be paying about \$8.00 for each \$1 of annual earnings (assuming that annual earnings remain constant).
- **12. Company A.** The price–earnings ratio for Company A is 8.00, indicating the investor pays \$8.00 to get \$1 (of earnings) back. For Company B, an investor pays \$11.00 to get \$1 back. For Company C, an investor pays \$29.28 to get \$1 back. An investment in Company A requires the smallest outlay to get \$1 back.
- 13. Investors apparently feel Company C has a much better future than is indicated by current earnings.

Unit 16.2 Bonds

- 14. True 15. True 16. False 17. True
- **18. (c) Premium.** Investors would prefer to have your 7% bond rather than a new 6% bond, so they will pay a premium for your bond.
- **19. (b) Discount.** Investors would prefer to have a new 8% bond rather than your 7% bond, so they will buy your bond only if you sell at a discount.

- 20. $8^{5}/8\% = 8.625\%$ 21. 2026 22. 30 bonds 23. $$1,000 \times 126.765\% = $1,267.65$
- 24. The prevailing rate for new bonds is less than the coupon rate for this bond; therefore, investors are willing to pay a premium for this bond.
- **25.** $$1,000 \times 0.583\% = 5.83 ; price **decreased \$5.83**

26. Cur Yld =
$$\frac{\text{Coupon rate}}{\text{Close column value}} = \frac{8.625}{126.765} \approx .0680 \approx 6.80\%$$

Price per bond: $$5,000 \times 133 \ 13/32\% = $5,000 \times 133.40625\% =$ 27. \$6,670.3125 Number of bonds \$ 20,010.94 Total price

Unit 16.3 Mutual funds

28. True

20				
29.	Total of closing prices	Liabilities	Shares outstanding	NAV
	\$23,478,000	\$4,122,000	800,000	$\frac{\$23,478,000 - \$4,122,000}{800,000} = \frac{\$19,356,000}{800,000} = \$24.20$
	\$8,155,000	\$1,050,000	450,000	$\frac{\$8,155,000 - \$1,050,000}{450,000} = \frac{\$7,105,000}{450,000} = \$15.79$
	\$745,000,000	\$192,000,000	5.820.000	\$745,000,000 - \$192,000,000 = \$553,000,000 = \$95.02

5,820,000

30. True 31. True

\$745,000,000

Challenge problems

32. Stock 33. Stock 34. Bond 35. Both 36. Bond

\$192,000,000

37. Before-tax return 6.75 Portion to taxman: $6.75 \times 28\% =$ -1.89After-tax return 4.86

> 5.25 (The municipal bond has the greater after-tax return) **b.** After-tax return

38. Let's determine which rate is better by finding what an arbitrary \$100 grows to over 1 year at each rate:

5,820,000

7.6% compounded annually: \$100 + 7.6% =\$107.60 7.5% compounded semiannually: Periodic rate = $7.5\% \div 2 = 3.75\%$ Balance in 6 months: \$100 + 3.75% = \$103.75 Balance in 12 months: +3.75% =\$107.64

Because it's ending balance is greater, the bond paying 7.5% compounded semiannually provides the greater return. In fact, that bond earns the same as one paying 7.64% compounded annually, because \$100 + 7.64% also results in an ending balance of \$107.64. Using the terminology of Unit 9.3, a rate of 7.5% compounded semiannually has an annual percentage yield (APY) of 7.64%.

Practice Test

60

1. Total dividends \$1,275,000

> Dividends for preferred stock: \$200,000 last year + \$400,000 this year 600,000 Dividends available to common stockholders \$ 675,000

Dividends per share of common stock: $$675,000 \div 562,500 \text{ shares} = 1.20

Your dividend: 150 shares \times \$1.20 per share = \$180

2.	52 w	veeks			PE	Vol		Net
	Hi	Lo	Div	Yld%	Ratio	100s	Close	Chg
	51.38	38.25	.60	1.3	25	1613	44.94	-0.88

- **a. \$51.38** per share
- **b. 161,300 shares** (1,613 × 100 = 161,300)
- c. 60¢ per share
- 3. $(125 \times \$44.94) + \$120 = \$5,617.50 + \$120 = \$5,737.50$
- 4. PE = $\frac{P}{E}$ = $\frac{\$86.75}{\$2.28}$ ≈ 38.05 ≈ 38

5.	Bond	Cur Yld	Vol	Close	Net Chg
	IBM 8³/ ₈ 18	6.3	30	132.758	+ 1.27

$$(\$1,000 \times 132.758\%) - \$75 = \$1,327.58 - \$75 = \$1,252.58$$

- **6.** $$1,000 \times 8^3/8\% = $1,000 \times 8.375\% = 83.75
- **7. (a) less than the coupon rate,** as evidenced by the bonds being priced at a premium; buyers are willing to pay a premium for this bond because it has an excellent interest rate.
- 9. NAV = $\frac{\$12,742,000 \$3,450,000}{900,000}$ = $\frac{\$9,292,000}{900,000}$ = \$10.32

Chapter I7 Additional Applications Using Financial Calculators

Unit 17.1 Solving for interest rate paid

1.	N	i	PV	PMT	FV
	$4 \times 12 = 48$	$7.2 \div 12 = 0.60$	27,500	-661.08	
	1	$0.65 \times 12 \approx 7.77$	27,200	↑	_

2.	N	i	PV	PMT	FV
	36	$1.49 \times 12 \approx 17.92$	2,150	-77.64	

3.	N	i	PV	PMT	FV
	36	1.09 × 12 ≈ 13.12	4,000	-135	

You should borrow from your credit union at 11.75% because your friend is charging you 13.12% interest.

- 4. Step 1 (dollar amount of interest): $I = PRT = \$800 \times 10\% \times 1 = \80.00
 - **Step 2 (add to loan amount)**: \$800 + \$80 = \$880
 - Step 3 (divide by total number of payments): $$880 \div 12 = 73.33

N	i	PV	PMT	FV
12	1.50 × 12 ≈ 17.96	800	-73.33*	

^{*}Note: Entered as a rounded amount (not the unrounded result of Step 3, above).

5.	N	i	PV	PMT	FV
	6	2.63 × 12 = 31.54*	470	-83.50 Begin**	

^{*}Note: Even though you pay only 6 monthly payments, we multiply the periodic rate (2.63%) by 12, not 6, because there are 12 months in a year.

^{**}Note: Don't forget to put back in "end" mode when finished.

6.	N	i	PV	PMT	FV
	$25 \times 12 = 300$	$6.5 \div 12 = 0.541\underline{6}$	90,000	-607.69	
	↑	$0.59 \times 12 \approx 7.07$	85,475*	↑	

^{*}Note: The reportable APR reflects origination fee, points, and mortgage insurance: \$90,000 - \$4,525 = \$85,475.

7.	N	i	PV	PMT	FV
	↑	$0.60 \times 12 \approx 7.21$	84,347*	^	

^{*}Note: A real APR reflects all loan costs. You receive net proceeds of \$84,347 after loan costs are deducted: \$90,000 - \$4,525 - \$1,128 = \$84,347. Notice, \$400 hazard insurance and \$425 into escrow account are not loan costs.

8. More. By prepaying the loan, loan costs must be spread over a shorter period of time; this has the effect of increasing the APR.

9.	N	i	PV	PMT	FV
	25 × 12 = 300	$6.5 \div 12 = 0.541\underline{6}$	90,000	-607.69	
	6 × 12 = 72	$0.66 \times 12 \approx 7.89$	84,347	^	-79,450.80*

^{*}Note: FV amount (79,450.80) is the balance after payment 72, found by amortizing 72 payments. Remember to enter in the FV register as a negative value.

10.	N	i	PV	PMT	FV
	$25 \times 12 = 300$	$6.875 \div 12 = 0.57291\underline{6}$	90,000	-628.94	
	$6 \times 12 = 72$	$0.65 \times 12 \approx 7.82$	86,147	1	-79,936.39*

^{*}Note: FV amount (\$79,936.39) is the balance after payment 72, found by amortizing 72 payments.

11. The 6.875% loan has a lower APR (7.82%) than the 6.5% loan (7.89%).

12.	N	i	PV	PMT	FV
	30 × 12 = 360	$9.5 \div 12 = 0.791\underline{6}$	80,000	-672.68	
	8 × 12 = 96	$0.90 \times 12 \approx 10.77$	74,700**	^	-74,374.40*

^{*}Note: FV amount (\$74,374.40) is the balance after payment 96, found by amortizing 96 payments.

13. Yes, unless you expect rates to drop. The 10.77% APR of the new loan is less than the 11.5% note rate of your existing loan.

Unit 17.2 Growth rates

14.	N	i	PV	PMT	FV
	62	7.03	-2,450		165,000

15.	N	i	PV	PMT	FV
	50	2.28	-9.9		30.6
	20	6.10	-30.6		100
	28	2.96	-100		226.4
	98	3.25	-9.9		1

^{**}Note: \$80,000 - \$2,300 loan costs - \$3,000 prepayment penalty for paying off old loan early = \$74,700.

16.	N	i	PV	PMT	FV
	12	3.29	-15,600		23,000

No; your salary has increased 3.29% per year, which is less than the average annual inflation rate.

17.	N	i	PV	PMT	FV
	69	2.76	-0.62		4.05

18.	N	i	PV	PMT	FV
	35	7.42	-0.359		4.399

Unit 17.3 Solving for interest rate earned

19.	N	i	PV	PMT	FV
	4	8.84	-28,500		40,000

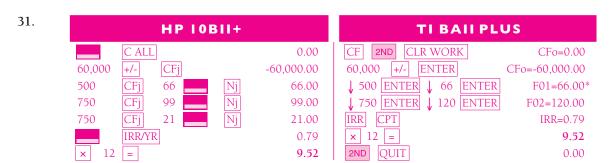
20.	N	i	PV	PMT	FV
	8	8.05	-940	70	1,000

- **21. The prevailing rate for similar bonds was apparently greater than the 7% coupon rate,** so the seller had to discount the price of the bond to attract investors.
- 22. Because you were able to buy the note at a discount.

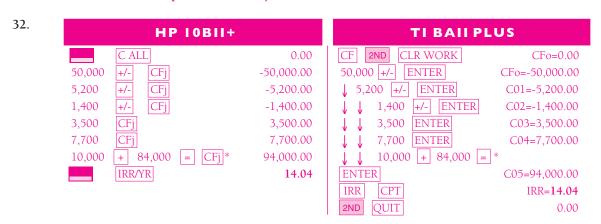
23.	N	i	PV	PMT	FV
	5	10.71	-940	70	1,130

- 24. Because you were able to sell the bond at a premium.
- 25. True
- 26. False

27.	N	i	PV	PMT	FV
	5	23.51	-305.75		878.95

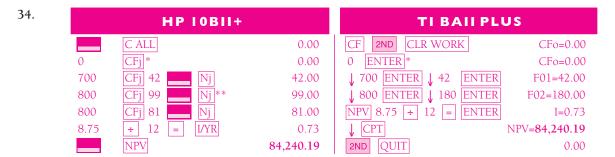

28.	N	i	PV	PMT	FV
	$6 \times 12 = 72$	$-0.37 \times 12 = -4.45$		-40 Begin*	2,522

^{*}Note: Don't forget to put back in "end" mode.


29.	N	i	PV	PMT	FV
	14	59.83	-750		532,500

Unit 17.4 Cash flow problems

30. $(66 \times \$500) + (120 \times \$750) = \$123,000$

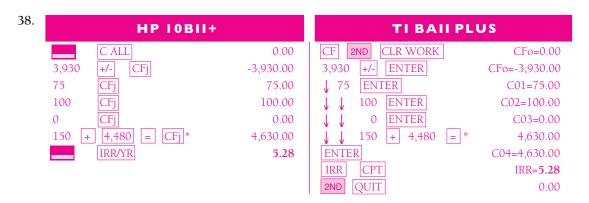


You will earn 9.52% compounded monthly.

*Note: Because the \$10,000 Year 5 cash flow and the \$84,000 sales proceeds both occur at the end of year 5, we combine before entering.

33.
$$(42 \times \$700) + (180 \times \$800) = \$173,400$$

^{*}Note: Because we do not know the amount, we enter a zero cash flow at the beginning of the first period.


Challenge problems

35. b and **d**; we can find a YTM on a bond and a yield on a note (based on a certain price).

36.	N	i	PV	PMT	FV
	4	3.33	-3,930		4,480

37.	N	i	PV	PMT	FV
	^	5.15	↑	75	^

^{**}Note: For the HP 10BII, the maximum value that can go in the Nj register is 99.

39.	N	i	PV	PMT	FV
	200	2.46	-4,000		520,000

40. a. Before-tax return 6.75Portion to taxman: $6.75 \times 28\% = \frac{-1.89}{4.86}$

b. After-tax return 5.25 (The municipal bond has the greater after-tax return)

41. 157 × \$550 = **\$86,350**

42.	N	i	PV	PMT	FV
	157	$0.62 \times 12 = 7.47$	-55,000	550	

Your yield will be 7.47% compounded monthly.

43. To earn a rate greater than 7.47% you must pay less than \$55,000.

44.	N	i	PV	PMT	FV
	^	$8.5 \div 12 = 0.7083$	-52,010.73	1	

45. Let's find the annual percentage yield (APY) for the 7.5% bond. Using an arbitrary \$100 deposit: Balance in 6 months: \$100 + 3.75% = \$103.75Balance in 12 months: $$4.75\% = $107.64 \rightarrow 100.64%

7.5% compounded semiannually is equivalent to 7.64% compounded annually, so **the bond paying 7.5% semiannually provides a greater return**.

Practice Test

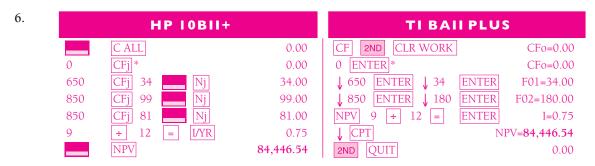
1.	N	i	PV	PMT	FV
	6	$3.46 \times 12 \approx 41.54$	345	-62.50 Begin*	

*Note: Don't forget to put back in "end" mode.

2.	N	i	PV	PMT	FV
	20 × 12 = 240	$6.75 \div 12 = 0.5625$	220,000	-1,672.80	
	6 × 12 = 72	$0.62 \times 12 \approx 7.48$	212,800**	1	-181,492.23*

*Note: FV amount (181,492.23) is the balance after payment 72, found by amortizing 72 payments. Enter in the FV register as a negative value.

**Note: \$220,000 - \$7,200 loan costs = \$212,800. The \$400 and \$350 amounts are not loan costs.


3.	N	i	PV	PMT	FV
	10	4.38	-155,000		238,000

4.	N	i	PV	PMT	FV	
	17 × 2 = 34	$3.94 \times 2 \approx 7.88$	-965	37.50	1,000	

Your YTM is **7.88% compounded semiannually.**

^{*}Note: The last \$250 dividend happened at the same time as the sale, so the two cash flows are combined.

^{*}Note: Because we do not know the amount, we enter a zero cash flow at the beginning of the first period.

Chapter 18 Financial Statements How to Read and Interpret

Unit 18.1 Income statements

- 1. (a) net income
- 2. (b) over a given period of time
- 3. False

	4.	5.	6.
Revenues	\$108,000	\$120,000	\$ 69,000
Total expenses	\$ 28,000	\$130,000	\$42,000
Net income (or loss)	\$ 80,000	(\$10,000)	\$27,000

- 7. Net sales = Gross sales Sales returns Sales discounts = \$805,000 \$5,400 \$15,700 = \$783,900
- **8.** Cost of goods sold = Beginning inventory + Cost of goods purchased Ending inventory = \$82,400 + \$264,000 \$94,800 = \$251,600
- 9. Gross profit = Net sales Cost of goods sold = \$783,900 \$251,600 = \$532,300
- 10. Net income = Gross profit Operating expenses = \$532,300 \$371,300 = \$161,000

Unit 18.2 Balance sheets

11. A 12. E 13. B 14. G 15. A 16. C 17. D 18. E&F* 19. B 20. G

*Note: For Problem 18, part of the mortgage will be paid within 1 year (or operating cycle); this amount (principal portion only, without interest) is a current liability. The remainder of the mortgage balance is a long-term liability.

21. Owner's equity = Assets - Liabilities = \$135,700 - \$24,800 = \$110,900

22. False

	23.	24.	25.
Total assets	\$128,000	\$820,000	\$219,000
Total liabilities	\$ 65,000	\$148,000	\$192,000
Equity	\$ 63,000	\$672,000	\$27,000

26. False. The equity section is called stockholders' equity.

27. True

28. False. The difference is called net worth.

Unit 18.3 Trend and ratio analysis

29. True

30.

BBB OFFICE SUPPLY, INC. Comparative Income Statement (2012 vs 2011)

	Annual Amounts		Percent of Net Sales		Increase (or Decrease)	
	2012	2011	2012	2011	Amount	Percent
Gross sales	\$346,200	\$364,900	101.1	100.5	(\$18,700)	(5.1)
Sales returns	3,800	1,700	1.1	0.5	2,100	123.5
Net sales	\$342,400	\$363,200	100.0	100.0	(\$20,800)	(5.7)
Cost of goods sold	153,100	148,700	44.7	40.9	4,400	3.0
Gross profit	\$189,300	\$214,500	55.3	59.1	(\$25,200)	(11.7)
Total operating expenses	177,700	153,400	51.9	42.2	24,300	15.8
Net income (before income taxes)	\$11,600	\$61,100	3.4	16.8	(\$49,500)	(81.0)
Less income taxes	4,000	22,000	1.2	6.1	(18,000)	(81.8)
Net income (after income taxes)	\$7,600	\$39,100	2.2	10.8	(\$31,500)	(80.6)

(continued on next page)

BBB OFFICE SUPPLY, INC.

Comparative BalanceSheet (Dec. 31,2012 vs Dec. 31,2011)

	Year-end Amounts		Percent of Total		Increase (or Decrease)	
	2012	2011	2012	2011	Amount	Percent
Assets Current assets Cash	\$23,100	\$36,100	17.7	22.1	(\$13,000)	(36.0)
Accounts receivable	42,000	45,100	32.2	27.6	(3,100)	(6.9)
Merchandise inventory	58,100	73,800	44.5	45.2	(15,700)	(21.3)
Prepaid expenses	300	300	0.2	0.2	0	0
Total current assets	\$123,500	\$155,300	94.6	95.2	(\$31,800)	(20.5)
Plant and equipment, net	7,100	7,900	5.4	4.8	(800)	(10.1)
Total assets	\$130,600	\$163,200	100.0	100.0	(\$32,600)	(20.0)
Liabilities Accounts payable	\$18,000	\$19,000	13.8	11.6	(\$1,000)	(5.3)
Total liabilities	\$18,000	\$19,000	13.8	11.6	(\$1,000)	(5.3)
Stockholders' Equity Common stock	\$100,000	\$100,000	76.6	61.3	\$0	0
Retained earnings	12,600	44,200	9.6	27.1	(31,600)	(71.5)
Total stockholders' equity	\$112,600	\$144,200	86.2	88.4	(\$31,600)	(21.9)
Total liabilities and SH equity	\$130,600	\$163,200	100.0	100.0	(\$32,600)	(20.0)

- **31.** The answer is a bit subjective, but here are a few ideas.
 - Sales decreased 5.1%.
 - Cost of goods sold increased 3.0%, even though sales decreased.
 - Expenses increased 15.8%, even though sales decreased.
 - Total stockholders' equity decreased \$31,600.

32. Current ratio =
$$\frac{\text{Current assets}}{\text{Current liabilities}} = \frac{\$123,500}{\$18,000} \approx 6.9$$

For each dollar of current liabilities, BBB has about \$6.90 of current assets.

33. Acid-test ratio =
$$\frac{Cash + Accounts \ receivable}{Current \ liabilities}$$
 = $\frac{\$23,100 + \$42,000}{\$18,000}$ = $\frac{\$65,100}{\$18,000}$ \approx 3.6

For each dollar of current liabilities, BBB has about \$3.60 of highly liquid assets.

34. Debt ratio =
$$\frac{\text{Total liabilities}}{\text{Total assets}} = \frac{\$18,000}{\$130,600} \approx .138 \approx 13.8\%$$

For each dollar of assets, BBB owes 13.8¢.

35. Inventory turnover =
$$\frac{\text{Cost of goods sold}}{\text{Average inventory}} = \frac{\$153,100}{(\$73,800 + \$58,100) \div 2} = \frac{\$153,100}{\$65,950} \approx 2.3$$

Inventory was sold 2.3 times during the year.

36. Cost of goods sold as % of net sales =
$$\frac{\text{Cost of goods sold}}{\text{Net sales}} = \frac{\$153,100}{\$342,400} \approx .447 \approx 44.7\%$$

BBB's goods cost 44.7% of what they sold for.

37. Profit margin, before tax =
$$\frac{\text{Net income, before tax}}{\text{Net sales}} = \frac{\$11,600}{\$342,400} \approx 0.034 \approx 3.4\%$$

BBB's profit is 3.4% of net sales.

38. Return on equity =
$$\frac{\text{Net income, after tax}}{\text{Equity}} = \frac{\$7,600}{\$112,600} \approx .067 \approx 6.7\%$$

BBB's profit, after tax, is 6.7% of stockholders' equity.

39. (b) Worse

- **40.** a. **Increase profits**. By increasing profits, LMN will have more cash or accounts receivable, thereby increasing current assets.
 - b. **Increase long-term financing**. By doing this, LMN will increase long-term liabilities and increase cash. Because long-term liabilities do not affect the current ratio, the ratio will be improved.
 - c. Reduce dividends. By reducing dividends, cash will not decrease as much.
 - d. Sell additional stock. By doing this, cash will be increased without affecting current liabilities.
- **41.** (a) High. Businesses prefer selling their inventory quickly.
- **42.** a. **Do more advertising**. By doing more advertising, sales should increase, thereby contributing to a quicker inventory turnover.
 - b. **Improve sales staff**. Maybe the sales staff is not assisting customers adequately. By giving better assistance, sales should increase
 - c. **Reduce inventory**. If inventory is excessive, reducing inventory may be a good strategy. However, if the inventory is not excessive, decreasing inventory may lead to a decrease in sales.

Challenge problems

- 43. Sole proprietorship and partnership 44. Partnership and corporation
- 45. Corporation 46. Corporation 47. Sole proprietorship and corporation 48. (c)
- 49. Income tax paid by corporation: \$1,200,000 × 34% \$408,000
 Income tax paid by stockholders:

Profit \$1,200,000

Less income tax paid by corporation - 408,000

Available for dividends \$792,000 × 35% +277,200

\$685,200

Total Percent of profit paid as income tax = $\frac{$685,200}{$1,200,000}$ = .571 = **57.1%**

FISHER'S Income Statement		NG STORE, I ter Ended Marc		
Revenue from sales				*1 570 00
Gross sales				\$1,653,800
Less: Sales returns				143,700
Net sales				\$1,510,10
Cost of goods sold	.010		# 42 C 000	
Merchandise inventory, January 1, 2	2013	****	\$436,000	
Purchases		\$922,800		
Less: Purchase returns	\$5,300			
Purchase discounts	13,800			
Subtotal		<u>19,100</u>		
Net purchases		\$903,700		
Add transportation in		<u>3,400</u>		
Cost of goods purchased			<u>907,100</u>	
Goods available for sale			\$1,343,100	
Merchandise inventory, March 31, 2013			<u>461,900</u>	
Cost of goods sold				_881,20
Gross profit from sales				\$628,90
Less operating expenses				_296,60
Net income (before income taxes)				\$332,30
Less income tax expense				_110,00
Net income (after income taxes)				\$222,30

51.

WAYNE'S CORNER MARKET, INC. Balance Sheet: June 30, 2013					
Assets					
Current assets					
Cash	\$22,800				
Merchandise inventory	42,200				
Prepaid expenses	800				
Total current assets		\$65,800			
Plant and equipment					
Store equipment	\$42,000				
Less accumulated depreciation	_10,500				
*		_31,500			
Total assets		\$97,300			
Liabilities ———					
Current liabilities					
Accounts payable	\$38,100				
Long-term liabilities					
Notes payable	5,000				
Total liabilities		\$43,100			
Stockholders' Equity					
Common stock: 1,000 shares @ \$20	\$20,000				
Retained earnings	_34,200				
Total stockholders' equity	_51,200	54.200			
Total liabilities and stockholders' equity		\$97,300			
Total habilities and stockholders equity		<u>\$71,500</u>			

Practice Test

- **1. An income statement is for a period of time, not a certain date.** The last line should read something like "For June 2006," "For quarter ending June 30, 2013," or "For six months ending June 30, 2013."
- 2. a. Net sales = Gross sales Sales returns Sales discounts = \$220,000 \$1,500 \$2,000 = \$216,500
 - **b.** Cost of goods sold = Beginning inventory + Cost of goods purchased Ending inventory = \$92,000 + \$145,000 \$95,000 = \$142,000
 - c. Gross profit = Net sales Cost of goods sold = \$216,500 \$142,000 = \$74,500
 - d. Net income = Gross profit Operating expenses = \$74,500 \$30,000 = \$44,500
- 4. $$42,100 \div $152,800 \approx .276 \approx 27.6\%$

5.

			Increase (or Decrease)		
Item	2013	2012	Amount	Percent	
Cash	\$27,000	\$23,000	\$4,000	17.4	
Accounts receivable	\$52,000	\$58,000	(\$6,000)	(10.3)	

6. a. Current ratio =
$$\frac{\text{Current assets}}{\text{Current liabilities}} = \frac{\$120,000}{\$72,000} \approx 1.7$$

For each dollar of current liabilities, the company has about \$1.70 of current assets.

b. Debt ratio =
$$\frac{\text{Total liabilities}}{\text{Total assets}} = \frac{\$150,000}{\$280,000} \approx .536 \approx 53.6\%$$

For each dollar of assets, the company owes about 53.6¢.

c. Inventory turnover =
$$\frac{\text{Cost of goods sold}}{\text{Average inventory}} = \frac{\$140,000}{(\$60,000 + \$68,000) + 2} = \frac{\$140,000}{\$64,000} \approx 2.2$$

Inventory was sold 2.2 times during the year.

Chapter 19 Inventory and Overhead

Unit 19.1 Inventory methods: Assigning a cost to ending inventory

- 1. True
- 2. Beginning inventory: 8 × \$11.35 \$ 90.80 March 23: $12 \times 11.62 139.44 May 5: $17 \times 11.55 196.35 July 23: $25 \times 12.25 306.25 15 × \$12.47 September 18: +187.05Totals \$919.89
- 3. From beginning inventory: 1 × \$11.35
 From March 23: 1 × \$11.62
 From July 23: 2 × \$12.25
 From September 18: 3 × \$12.47
 Totals

 Total cost available for sale

 \$919.89
 \$11.05
- 4. Average unit cost = $\frac{\text{Total cost available for sale}}{\text{Number of units available for sale}} = \frac{\$919.89}{77} = \$11.95$

Ending inventory = $7 \times $11.95 = 83.65

5. Because the FIFO method assumes that the oldest goods were sold first, the 7 hammers in ending inventory are the most *recently* purchased.

7 hammers \times \$12.47 (from the September 18 purchase) = \$87.29

6. LIFO method assumes that the ending inventory consists of the oldest goods.

7 hammers \times \$11.35 (from beginning inventory) = \$79.45

- 7. Specific identification: COGS = Cost of goods available for sale ending inventory = \$919.89 \$84.88 = \$835.01

 Weighted average: COGS = Cost of goods available for sale ending inventory = \$919.89 \$83.65 = \$836.24

 FIFO: COGS = Cost of goods available for sale ending inventory = \$919.89 \$87.29 = \$832.60

 LIFO: COGS = Cost of goods available for sale ending inventory = \$919.89 \$79.45 = \$840.44
- 8. By thinking of COGS as an expense, we find that the FIFO method (with the lowest COGS) will result in the greatest profit.
- **9.** The method with the greatest ending inventory (**FIFO**) will produce the greatest total assets, and therefore the greatest equity.

Unit 19.2 Overhead: Spreading expenses to departments

10. False. In some cases, using floor space is appropriate. In other cases, it is more appropriate to use something else, such as building value, number of employees, or sales.

- 11. A: $\frac{365,000}{1,850,000} \times \$65,000 = \$12,824.32 \approx \$12,800$ B: $\frac{420,000}{1,850,000} \times \$65,000 = \$14,756.76 \approx \$14,800$ C: $\frac{1,065,000}{1,850,000} \times \$65,000 = \$37,418.92 \approx $37,400$ Total allocation \$65,000
- 12. A: $\frac{422,000}{1,612,000} \times $40,000 = $10,471.46 \approx $10,471$ B: $\frac{377,000}{1,612,000} \times $40,000 = $9,354.84 \approx $9,355$ C: $\frac{813,000}{1,612,000} \times $40,000 = $20,173.70 \approx $20,174$ Total allocation \$40,000

13. A: $\frac{12,000}{84,400}$ × \$7,100 = \$1,009.48 \approx \$1,010

 $\frac{00}{00}$ × \$7,100 = \$1,556.28 \approx \$1,560

C: $\frac{53,900}{84,400} \times \$7,100 = \$4,534.24 \approx \$4,530$

Total allocation \$7,100

Challenge problems

14. A: $\frac{16}{64} \times \$18,210 = \$4,552.50 \approx \$4,553$ $\$4,552 \leftarrow$ (The rounded total [\$18,211] is \$1 too high, so one of the rounded amounts must be decreased \$1. Dept. A requires the least adjustment.)

B: $\frac{15}{64}$ × \$18,210 = \$4,267.97 \approx \$ 4,268 \$ 4,268

C: $\frac{33}{64}$ × \$18,210 = \$9,389.53 \approx \$9,390 \$ 9,390

Total allocation \$18,211 \$18,210

LIFO 15. Available for sale Weighted average **FIFO** $\frac{$23,160}{46}$ = \$503.48 4 × \$480 \$ 1.920 $3 \times \$520 = \$1,560.00$ $3 \times \$480 = \$1,440.00$ $10 \times 490 4,900 12 × \$495 $3 \times \$503.48 = \$1,510.44$ 5,940 $20 \times \$520 + 10,400$

Practice Test

46

Available for sale Weighted average FIFO LIFO

 $\frac{\$11,400}{50} = \193.22 $12 \times 180 \$ 2,160 $8 \times \$200 = \$1,600.00$ $8 \times \$180 = \$1,440.00$ $10 \times 190 1,900

 $12 \times 195 2,340 $8 \times \$193.22 = \$1,545.76$

 $25 \times $200 + 5,000$

2. Available for sale Specific identification **COGS**

35 × \$340 \$11,900 \$76,150 - \$11,510 = **\$64,640** $12 \times 340 \$ 4,080 $40 \times 350 14,000 $4 \times 350 1,400

 $18 \times $335 + 6,030$ $150 \times $335 + 50,250$ 225 \$76,150 34 \$11,510

3. c

\$23,160

\$11,400

4. Total sq ft: 22,000 + 37,000 + 25,000 + 18,000 = 102,000 sq ft

Department 1 share: $\frac{22,000}{102,000} \times $15,788 = $3,405.25$

Chapter 20 **Depreciation**

Unit 20.1 Depreciation for financial accounting

- 1. False 2. \$1,300 3. **5** years 4. \$150
- **5.** \$1,150 (\$1,300 \$150). This is the amount that can be depreciated.
- **6.** $$230 \times 3 \text{ years} = 690
- 7. \$1,300 \$690 = **\$610**
- **8. False.** To take depreciation, a business must *own* the asset.
- 9. False. Part of the purchase price is for land, and because land does not wear out, only the building portion can be depreciated.

10. Annual depreciation = $\frac{\text{Depreciable basis}}{\text{Useful life}}$ = $\frac{\$2,000}{5}$ = \$400

11.	Year	Depreciation expense	Accumulated depreciation	Book value
	Begin	_	_	\$2,400
	1	\$400	\$ 400	\$2,000
	2	\$400	\$ 800	\$1,600
	3	\$400	\$1,200	\$1,200
	4	\$400	\$1,600	\$800
	5	\$400	\$2,000	\$400

12. Depreciation per unit =
$$\frac{\text{Depreciable basis}}{\text{Total estimated units of production}}$$
 = $\frac{\$2,000}{160,000}$ = $\$0.0125$ (1.25¢ per copy)

Year	Annual depreciation	Book value
Begin	_	\$2,400
1	34,200 copies × \$0.0125 ≈ \$428	\$1,972
2	35,800 copies × \$0.0125 ≈ \$448	\$1,524
3	30,100 copies × \$0.0125 ≈ \$376	\$1,148
4	38,400 copies × \$0.0125 = \$480	\$668
5	35,200 copies × \$0.0125 = \$440; limited to \$268 *	\$400
Total	\$2,000	NA

^{*}Note: Because book value cannot go below the \$400 salvage value, year 5 depreciation is limited to \$268.

13. Rate = $\frac{200\%}{5}$ = 40% (For each year, multiply the previous year-end book value by 40%.)

Year	Annual depreciation	Book value
Begin	<u> </u>	\$2,400
1	\$2,400 × 40% = \$960	\$1,440
2	\$1,440 × 40% = \$576	\$864
3	\$864 × 40% ≈ \$346	\$518
4	\$518 × 40% ≈ \$207; limited to \$118 *	\$400
5	\$0	\$400
Total	\$2,000	NA

^{*}Note: Because book value cannot go below the \$400 salvage value, depreciation for year 4 is limited to \$118, and no deprecation is taken in year 5.

14. The determining factor is when the asset is placed in service (June 17). Because the desk was not placed in service during the first 15 days of June, you get no depreciation for June. You get depreciation for **6 months** (July through December).

15. Year 1:
$$\frac{\$1,400}{7} \times \frac{6}{12} = \$100$$
 Year 2: $\frac{\$1,400}{7} = \200

Unit 20.2 Depreciation for federal income taxes (MACRS)

- 16. True
- 17. False. 27.5-year property is presumed to have been purchased in the middle of the month it was purchased.
- 18. 5 years (See Illustration 20-3)
- 19. 5 years

- 20. 39 years
- 21. 7 years
- **22.** Use the rates of Illustration 20-4: $$2,500 \times 20\% = 500
- 23. $\$8,000 \times 7.41\% \approx \593
- **24.** \$800 × 32% = **\$256**
- **25.** Illustation 20-5: $$220,000 \times 1.364\% \approx $3,001$
- **26.** Illustration 20-6: $$970,000 \times 2.564\% \approx $24,871$
- 27. Illustration 20-7: $\$970,000 \times 2.5\% = \$24,250$
- **28.** For MACRS, we don't decide on a useful life; the IRS dictates the life. In Illustration 20-3, we find the recovery period for a copy machine is 5 years not 3 years. Also, for MACRS we ignore salvage value. Use Illustration 20-4.

Year 1:	$$1,500 \times 20\%$	\$300
Year 2:	$$1,500 \times 32\%$	480
Year 3:	\$1,500 × 19.20%	288
Year 4:	\$1,500 × 11.52%	173
Year 5:	\$1,500 × 11.52%	173
Year 6:	$$1,500 \times 5.76\%$	<u>+ 86</u>
Total		\$1,500

- 29. You get only half a year's depreciation in year 1; this carries some depreciation into year 6.
- 30. Building value = $$250,000 \times 80\% = $200,000$. Use Illustration 20-5, September column.

Year 1: \$200,000 × 1.061% \$2,122 Year 2: \$200,000 × 3.636% \$7,272 Year 3: \$200,000 × 3.636% \$7,272

- 31. Taxpayers are allowed only 11.5 months depreciation for year 1.
- **32. a.** Section 179 expense deduction (maximum for 2012) \$125,000
 - b. MACRS depreciation

Depreciable basis: \$140,000 - \$125,000 = \$15,000

Depreciation (7-year property): $$15,000 \times 14.29\%$ **\$2,144 (rounded)**

Challenge problems

33. Calendar-year 1: $\frac{\$27,000}{5} \times \frac{7}{12} = \$3,150$

Calendar-year 2: $\frac{$27,000}{5} = $5,400$

Calendar-year 3: $\frac{$27,000}{5} = $5,400$

34. Rate = $\frac{200\%}{5}$ = 40% (For each 12 months, multiply the previous year-end book value by 40%.)

Months	Depreciation	Book value
Begin	_	\$35,000
1–12	\$35,000 × 40% = \$14,000	\$21,000
13–24	\$21,000 × 40% = \$8,400	\$12,600
25–36	$$12,600 \times 40\% = $5,040$; limited to \$4,600	\$8,000

Calendar-year 1: $$14,000 \times \frac{7}{12} \approx $8,167$

Calendar-year 2: $(\$14,000 \times \frac{5}{12}) + (\$8,400 \times \frac{7}{12}) \approx \$10,733$

Calendar-year 3: $(\$8,400 \times \frac{5}{12}) + (\$4,600 \times \frac{7}{12}) \approx \$6,183$

35. Calendar-year 1: $$35,000 \times 20\% = $7,000$

Calendar-year 2: $$35,000 \times 32\% = $11,200$

Calendar-year 3: $$35,000 \times 19.20\% = $6,720$

36. Straight-line: \$3,150 + \$5,400 + \$5,400 = \$13,950

200% declining-balance: $\$8,167 + \$10,733 + \$6,183 = \$25,083 \leftarrow (200\% declining balance has the greatest)$

MACRS: \$7,000 + \$11,200 + \$6,720 = \$24,920

Practice Test

1. a. \$30,000 b. 5 years c. \$5,000 d. \$25,000 e. \$10,000 f. \$20,000

2. $\frac{\$5,000}{250,000} = \0.02 (2¢ per copy) Year 1: 78,200 copies × \$0.02 = \$1,564 Year 2: $65,300 \times \$0.02 = \$1,306$

3. $\frac{125\%}{8}$ = 15.625% (For each year, multiply the previous year-end book value by 15.625%.)

Year	Annual depreciation	Book value
Begin	_	\$2,000
1	\$2,000 × 15.625% ≈ \$313	\$1,687
2	\$1,687 × 15.625% ≈ \$264	\$1,423

4. Get no depreciation for the first 9 months.

Year 1:
$$\$313 \times \frac{3}{12} \approx \$78$$
 Year 2: $(\$313 \times \frac{9}{12}) + (\$264 \times \frac{3}{12})$
= $\$234.75 + \$66 \approx \$301$

5. Desks have 7-yr recovery period; salvage value is ignored.

Year 1: $\$2,000 \times 14.29\% \approx \286 Year 2: $\$2,000 \times 24.49\% \approx \490

6. Building value = $\$850,000 \times 80\% = \$680,000$

Use Illustration 20-5, July column: Year 1: $$680,000 \times 1.667\% \approx $11,336$ Year 2: $$680,000 \times 3.636\% \approx $24,725$

7. a. Section 179 expense deduction (maximum for 2011) \$125,000

b. MACRS depreciation

Depreciable basis: \$133,000 - \$125,000 = \$8,000

Depreciation: $\$8,000 \times 14.29\%$ \$1,143

Chapter 21 Taxes: Income, Sales, and Property

Unit 21.1 Federal income tax

- 1. False
- 2. (a) Tax tables
- 3. Ill. 21-1, "\$16,450-\$16,500" range, single column: \$2,046
- 4. **Step 1 (locate the schedule):** Ill. 21-2, Schedule Y-1
 - **Step 2 (find the range):** "over \$69,000 but not over \$139,350"
 - **Step 3 (find difference):** \$133,400 \$69,000 = \$64,400
 - Step 4 (multiply by rate): $$64,400 \times 25\% = $16,100$
 - Step 5 (find the tax): \$16,100 + \$9,500 = \$25,600
- 5. Step 1 (locate the schedule): Ill. 21-2, Schedule Y-1
 - **Step 2 (find the range):** "over \$139,350 but not over \$212,300"
 - **Step 3 (find difference):** \$162,400 \$139,350 = \$23,050
 - Step 4 (multiply by rate): $$23,050 \times 28\% = $6,454$
 - Step 5 (find the tax): $\$6,454 + \$27,087.50 = \$33,541.50 \approx \$33,542$

6. Tom (\$42,000)

Ill. 21-1, "\$42,000–\$42,050" range, married filing separately column: \$6,631

Shauna (\$120,400)

Step 1 (locate the schedule): Ill. 21-2, Schedule Y-2

Step 2 (find the range): "over \$106,150 but not over \$189,575"

Step 3 (find difference): \$120,400 - \$106,150 = \$14,250

Step 4 (multiply by rate): $$14,250 \times 33\% = $4,702.50$

Step 5 (find the tax): $\$4,702.50 + \$23,756.75 = \$28,459.25 \approx \$28,459$

7. Tom (\$42,000)

Ill. 21-1, "\$42,000-\$42,050" range, single column: \$6,631

Shauna (\$120,400)

Step 1 (locate the schedule): Ill. 21-2, Schedule X

Step 2 (find the range): "over \$83,600 but not over \$174,400"

Step 3 (find difference): \$120,400 - \$83,600 = \$36,800

Step 4 (multiply by rate): $$36,800 \times 28\% = $10,304$

Step 5 (find the tax): \$10,304 + \$17,025 = \$27,329

8. Married filing jointly:

\$33,542 This is the least tax

\$35,090 This is the greatest tax

Married filing separately: \$6,631 (Tom) + \$28,459 (Shauna) Single: \$6,631 (Tom) + \$27,329 (Shauna)

\$33,960

- 9. **Step 1** (find the range): Ill. 21-3, "over \$10,000,000 but not over \$15,000,000"
 - **Step 2 (find difference):** \$12,525,000 \$10,000,000 = \$2,525,000
 - **Step 3 (multiply by rate):** $$2,525,000 \times 35\% = $883,750$

Step 4 (find the tax): \$883,750 + \$3,400,000 = \$4,283,750

Unit 21.2 Sales tax

10. False. Sales tax is charged only on sales to consumers. Sales tax is not charged on goods purchased for resale.

11.	Cost of merchandise	\$20.49
	Sales tax (from chart)	+ 1.23
	Total amount due	\$21.72

12.	Cost of merchandise	\$20.49
	Sales tax: \$20.49 × 6%	+ 1.23
	Total amount due	\$21.72

13.	Price of new car	\$22,400
	Less trade-in	<u>- 6,500</u>
	Not price	\$15,000 × 6,5%

Net price $$15,900 \times 6.5\% = $1,033.50$

14. Your city Different part of state

Price	\$18,700.00	Price	\$18,300.00
Sales tax: $$18,700 \times 6.5\%$	_1,215.50	Sales tax: $$18,300 \times 7.25\%$	1,326.75
Total amount due	\$19,915.50	Total amount due	\$19,626.75

Unit 21.3 Property tax

76

- 15. (b) State and local governments
- 16. $$350,000 \times 50\% = $175,000$
- 17. Tax rate = $\frac{\text{Total budget of the taxing entity}}{\text{Total assessed value within the taxing entity}} = \frac{\$25,194,500}{\$3,825,876,200} \approx .0065853 \approx .006586 \text{ (rounded up)}$
- **18.** Tax rates are rounded *up* to ensure adequate revenues. A tax rate of .006585 would not produce enough money: $\$3,825,876,200 \times .006585 = \$25,193,394.78$ (a bit short of the \$25,194,500 needed).
- **19.** \$175,000 Assessed value \times .024593 Tax rate = \$4,303.78

- **20.** Property tax = $\frac{\text{Assessed value}}{\$100} \times \text{Tax rate} = \frac{\$175,000}{\$100} \times \$2.452 = \$4,291.00$
- **21.** Property tax = Assessed value \times Tax rate = \$248,000 \times 1.8565% = \$4,604.12
- 22. Property tax = $\frac{\text{Assessed value}}{1,000} \times \text{Mill levy} = \frac{\$720,000}{1,000} \times 21.344 = \$15,367.68$

- 23. Ill. 21-1, "\$70,800-\$70,850" range, married filing jointly column: \$9,956
- 24. Step 1 (locate the schedule): Ill. 21-2, Schedule Y-1
 - Step 2 (find the range): "over \$69,000 but not over \$139,350"
 - **Step 3 (find difference):** \$70,824 \$69,000 = \$1,824
 - **Step 4 (multiply by rate):** $$1,824 \times 25\% = 456
 - Step 5 (find the tax): \$456 + \$9,500 = \$9,956
- 25. Same
- 26. A likely guess: Tax tables are, for most people, easier to use than tax rate schedules.
- **27**. **25**% (found in Step 4 of Problem 24)
- **28.** The 25% means that for each additional dollar of taxable income, Cary and Judy must pay 25% to the IRS. For example, if Cary and Judy had \$100 of additional taxable income, they would pay an extra \$25 to the IRS.
- **29.** $\frac{\$9.956 \text{ (tax, Problem 23)}}{\$70.824 \text{ (taxable income)}} \approx .1406 \approx 14.06\%$
- **30.** Assessed value = $$200,000 \times 25\% = $50,000$
 - Property tax = $\frac{\text{Assessed value}}{1,000}$ × Mill levy = $\frac{\$50,000}{1,000}$ × 51.044 = \\$2,552.20

Practice Test

- 1. Ill. 21-1, "\$41,800-\$41,850" range, single column: \$6,581
- 2. Step 1 (locate the schedule): Ill. 21-2, Schedule Y-1
 - **Step 2 (find the range):** "over \$139,350 but not over \$212,300"
 - **Step 3 (find difference):** \$182,488 \$139,350 = \$43,138
 - Step 4 (multiply by rate): $$43,138 \times 28\% = $12,078.64$
 - Step 5 (find the tax): $$12,078.64 + $27,087.50 = $39,166.14 \approx $39,166$
- 3. Illustration 21-3: $$35,911,080 \times 35\% = $12,568,878$
- 4. Cost of TV \$6,800 Sales tax: \$6,800 × 6.75% + 459 Total amount due \$7,259
- **5.** Price of new vehicle \$47,500
 - Less trade-in 8,000
 - Net price $$39,500 \times 7\% = $2,765$
- **6.** Tax rate = $\frac{\text{Total budget of the taxing entity}}{\text{Total assessed value within the taxing entity}} = \frac{\$8.255,500}{\$952,844,200} \approx .0086641 \approx .008665$ (round up)
- 7. Property tax = $\frac{\text{Assessed value}}{\$100} \times \text{Tax rate} = \frac{\$450,000}{\$100} \times \$2.628 = \$11,826$

Chapter 22 Insurance

Unit 22.1 Property insurance

- **1. False.** Each policy explains what hazards are covered. If the loss results from a hazard covered in the policy, the insured gets reimbursed; if the loss results from a hazard not covered in the policy, the insured is not reimbursed.
- 2. \$750 (You will receive the cost to replace the camera.)
- 3. \$600 (This was the value of the camera immediately prior to the loss).
- **4.** \$750 (replacement cost) \$500 (deductible) = **\$250**

5.	Total annual premium	\$280.00
	Earned portion: $$280 \times \frac{218}{365}$	<u>- 167.23</u>
	Refund	\$112.77

6. False. There are several different types of homeowner's policies, each covering different hazards.

7.	Basic premium (look across \$170,000 row to column 4)	\$753.00
	Security system discount: \$753 × 5%	<u>- 37.65</u>
	Subtotal	\$715.35
	Premium for additional liability coverage	+ 60.00
	Total annual premium	\$775.35 (\$775 rounded)

- 8. False. Most homeowner's policies automatically cover personal belongings for a percent of the policy's face value.
- 9. Basic premium: \$\frac{\$1,550,000}{\$1,000} \times \$2.70 \$4,185.00

 Discount for having \$1,000 deductible: \$4,185 \times 4% \$-\frac{167.40}{\$4,017.60}\$

 Subtotal \$4,017.60

 Additional liabilities coverage: \$\frac{\$1,550,000}{\$1,000} \times \$0.20 \$+\frac{310.00}{\$4,328}\$ rounded)

 Total annual premium \$4,327.60 (\$4,328 rounded)
- 10. False. Collision coverage pays for damage to the insured's car only.
- 11. False. With no-fault coverage, reimbursement for bodily injury (up to a certain dollar limit) is made without regard to who was at fault.

Unit 22.2 Life insurance

- 12. False. Rates vary greatly, depending on age, sex, and medical condition.
- 13. Decreasing term
- 14. Whole-life
- 15. Universal life
- 16. Term insurance
- 17. $\frac{$200,000}{$1,000} \times $2.66 = 532
- 18. \$532 (The premium stays the same for the 15-year period.)
- 19. $\frac{$200,000}{$1,000} \times $6.58 = $1,316$
- **20.** $\frac{$200,000}{$1,000} \times $9.63 = $1,926$
- 21. \$1,926 (The premium stays the same for life.)
- 22. Remember, the rates of Ill. 22-3 are for males. Rates for females are those of a male 4 years younger, so

$$\frac{\$120,000}{\$1,000}$$
 × \$7.06 (rate for a 23 year old) = \$847.20

- 23. True
- **24.** Using Ill. 22-5, 10 years, Option 1: $\frac{\$100,000}{\$1,000} \times \$96 = \$9,600$
- **25.** Using Ill. 22-5, 10 years, Option 2: $\frac{$100,000}{$1,000} \times $258 = $25,800$ of coverage

- **26.** Using Ill. 22-5, 10 years, Option 3: **18 years**, **74 days**
- 27. False. The beneficiary can elect to receive the money over time; several annuity plans are available.

28. N i PV PMT FV $6 5.30 \times 12 \approx 63.57$ 450 -85 Begin*

*Note: $$450 \div 6 = 75 ; \$75 + \$10 carrying charge = \$85.

29.	N	i	PV	PMT	FV
	15	6.15		-715 Begin*	17,870

*Note: \$892 (total premium) - \$177 (insurance portion) = \$715 to cash value (savings) portion. Don't forget to put back in "end" mode.

30.	N	i	PV	PMT	FV
	$20 \times 12 = 240$	$0.40 \times 12 \approx 4.82^*$	-150,000	975	

^{*}Note: If, by chance, you forgot to change back to "End" mode, you would have gotten a wrong answer.

Practice Test

1. \$650 (cost to replace) - \$500 (deductible) = \$150

2.	Annual premium	\$620.00	
	Earned portion: $$620 \times \frac{145}{365}$	<u>- 246.30</u>	
	Refund	\$373.70	

3.	Basic premium (look across \$180,000 row to column 3)	\$641.00	
	Burglar alarm discount: \$641 × 5%	<u>- 32.05</u>	
	Subtotal	\$608.95	
	Smoke alarm discount: \$608.95 × 3%	<u>- 18.27</u>	
	Subtotal	\$590.68	
	New home discount: \$590.68 × 10%	<u>- 59.07</u>	
	Annual premium	\$531.61 (\$532	rounded)

4.	Basic premium: $\frac{$700,000}{$1,000} \times 3.90	\$2,730.00
	Discount for having \$2,500 deductible: $$2,730 \times 6\%$	<u>- 163.80</u>
	Subtotal	\$2,566.20
	Additional liability coverage: $\frac{\$700.000}{\$1,000} \times \$0.20$ Total annual premium	<u>+ 140.00</u> \$2,706.20 (\$2,706 rounded)

- **5. None are true.** Collision covers damage to *your* car caused by collision. With no-fault insurance, reimbursement for bodily injury (up to a certain dollar limit) is made *without regard* to who was at fault. If another driver damages your car and has no insurance, your company pays only if you have uninsured motor vehicle coverage.
- 6. True
- 7. With term insurance, we pay for insurance only. With whole life, we pay for insurance plus savings.
- **8.** Rates of Ill. 22-3 are for males; for females, deduct 4 years, so: $\frac{\$70,000}{\$1,000} \times \$7.39 = \517.30 (same for her entire life)
- **9.** Ill. 22-5, 20 years, Option 2: $\frac{$200,000}{$1,000} \times $548 = $109,600$

Chapter 23 Measurements: Real-World Applications

Unit 23.1 Length, area, and volume: Applications

- 1. 90° 2. True 3. 10 ft + 12 ft + 13 ft + 20 ft + 20 ft = 75 ft 4. 23.32 in. + 12 in. + 20 in. = 55.32 in.
- 5. 10 ft + 20 ft + 5 ft + 10 ft + 15 ft + 10 ft + 5 ft + 20 ft + 5 ft + 5 ft + 10 ft + 5 ft = 120 ft
- **6.** P = 2(L + W) = 2(660 ft + 330 ft) = 2(990 ft) = 1,980 ft
- 7. *r*, *d*, *c*. Diameter is twice the radius; circumference is about 3.14 times the diameter.
- 8. $C = \pi d \approx 3.14(48 \text{ in.}) \approx 150,72 \text{ in.}$
- 9. $d = \frac{c}{\pi} \approx \frac{44 \text{ ft}}{3.14} \approx 14.01 \text{ ft}$
- 10. Rectangle: A = LW = (38 in.)(30 in.) 1,140 in.²
 Triangle: $A = \frac{1}{2}bh = \frac{1}{2}(7 \text{ in.})(30 \text{ in.})$ + 105 in.²
 Total area 1,245 sq in.
- 11. Entire circle: $A = \pi r^2 \approx 3.14(15 \text{ in.})(15 \text{ in.})$ 706.50 in.²

 Inner circle: $A = \pi r^2 \approx 3.14(3 \text{ in.})(3 \text{ in.})$ 706.50 in.²

 Net area 678.24 sq in.
- 12. Large rectangle: $A = LW = (60 \text{ ft})(30 \text{ ft}) = 1,800 \text{ ft}^2$ Missing rectangle: $A = LW = (15 \text{ ft})(5 \text{ ft}) = -75 \text{ ft}^2$ Rectangle at bottom: $A = LW = (30 \text{ ft})(5 \text{ ft}) = +150 \text{ ft}^2$ Total square footage 1,875 sq ft
- 13. $A = \pi r^2 \approx 3.14(50 \text{ mi})(50 \text{ mi}) \approx 7,850 \text{ sq mi}$
- **14.** V = LWH = (15 in.)(15 in.)(15 in.) = 3,375 cu in.
- 15. Entire cube: $V = LWH = (25 \text{ ft})(15 \text{ ft})(20 \text{ ft}) = 7,500 \text{ ft}^3$ Missing portion: $V = LWH = (10 \text{ ft})(15 \text{ ft})(10 \text{ ft}) = -1,500 \text{ ft}^3$ Net volume

 6,000 cu ft
- **16.** $V = \pi r^2 h \approx 3.14(5 \text{ in.})(5 \text{ in.})(10 \text{ in.}) \approx 785 \text{ cu in.}$
- 17. V = LWH = (90 ft)(40 ft)(18 ft) = 64,800 cu ft 64,800 ÷ 250 = 259.20 = 259 tickets
- 18. $V = \pi r^2 h \approx 3.14(14 \text{ ft})(14 \text{ ft})(15 \text{ ft}) \approx 9,231.60 \text{ cu ft}$
- **19**. V = LWH = (18 yd)(18 yd)(18 yd) = 5,832 cu yd

Unit 23.2 Unit costs and converting measurements (U.S. to U.S.)

20. 68-oz: Cost per ounce = $\frac{\text{Cost}}{\text{Number of ounces}} = \frac{\$1.19}{68 \text{ oz}} = \$0.0175 \text{ per oz} = 1.75 \text{ per oz}$ (This one is cheaper)

Six-pack: Cost per ounce =
$$\frac{Cost}{Number of ounces} = \frac{\$1.49}{72 \text{ oz}} \approx \$0.0207 \text{ per oz} \approx 2.07 \text{¢ per oz}$$

- **21.** P = 2(L + W) = 2(40 ft + 30 ft) = 2(70 ft) = 140 ft Cost = $140 \times \$4.75 = \665
- 22. Area of rectangle: A = LW = (70 ft)(40 ft) = 2,800Area of circle: $A = \pi r^2 \approx 3.14(20 \text{ ft})(20 \text{ ft}) \approx \frac{+1,256}{4,056} \times $6.50 = $26,364$
- **23.** A = LW = (74 ft)(62 ft) = 4,588 sq ft $Cost: (4,588 \times \$0.22) + \$35 = \$1,009.36 + \$35 = \$1,044.36$
- **24.** 1,875 sq ft \times \$120 per sq ft = \$225,000

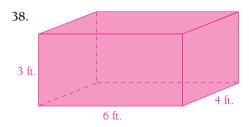
- 25. Weight of each can, with beans: 12 oz + 1 oz 13 oz

 Number of cans

 Total weight of cans, filled

 Weight of carton

 13 oz $\frac{\times 24}{10}$ $\frac{1}{10}$ $\frac{1}{10}$
 - Total weight of carton, filled 322 oz = $(322 \div 16)$ lb ≈ 20.13 pounds
- **26.** $A = LW = (24 \text{ ft})(15 \text{ ft}) = 360 \text{ sq ft} = (360 \div 9) \text{ sq yd} = 40 \text{ sq yd}$ $Cost = 40 \text{ sq yd} \times \$21.50 \text{ per sq yd} = \860
- 27. $A = LW = (2,640 \text{ ft})(100 \text{ ft}) = 264,000 \text{ sq ft} = (264,000 \div 43,560) \text{ acres} \approx 6.06060606 \text{ acres}$ 6.06060606 acres × \$22,000 per acre = \$133,333.33
- **28.** 65 ft \times 150 times = 9,750 ft = (9,750 ÷ 5,280) mi \approx **1.85 mi**
- **29.** 100 yds = (100×36) in. = 3,600 in. 3,600 in. \div 30 in. per day = **120 days**


- 30. $C = 2\pi r \approx 2(3.14)(15 \text{ in.}) \approx 94.20 \text{ in.}$ (The car travels 94.20 inches for each revolution of the tires.) 3,403 mi = (3,403 × 5,280) ft = 17,967,840 ft = (17,967,840 × 12) in. = 215,614,080 in. (The car travels 215,614,080 in.)
 - Tire revolutions: 215,614,080 in. \div 94.20 in. per revolution \approx 2,288,897 revolutions
- 31. Diameter of earth: $d = \frac{c}{\pi} \approx \frac{25,000 \text{ mi}}{3.14} \approx 7,961.783439 \text{ mi}$
 - Diameter of satellite orbit: 7,961.783439 mi + 400 mi = 8,361.783439 mi Circumference of orbit: $C = \pi d \approx 3.14(8,361.783439 \text{ mi}) \approx 26,256 \text{ mi}$
- 32. Area of ceiling: $14 \text{ ft} \times 18 \text{ ft}$ 252 sq ft
 - Gallons required: 252 sq ft \div 200 sq ft per gallon \approx 1.26 gal \approx 2 gal (Can't buy part of a gallon)
 - Area of walls:
 - 2 walls 14 ft wide: $2(14 \text{ ft} \times 9 \text{ ft}) = 2(126 \text{ sq ft}) =$ 252 sq ft 2 walls 18 ft wide: $2(18 \text{ ft} \times 9 \text{ ft}) = 2(162 \text{ sq ft}) =$ + 324 sq ft Less windows: $3(3 \text{ ft} \times 4 \text{ ft}) = 3(12 \text{ sq ft}) =$ - 36 sq ft Less door: $3 \text{ ft} \times 7 \text{ ft} =$ - 21 sq ft Net area 519 sq ft
 - Gallons required: 519 sq ft \div 200 sq ft per gallon \approx 2.60 gal \approx 3 gal (Can't buy part of a gallon)
 - Cost: 5 gal \times \$32.95 = **\$164.75**
- 33. 27 in. = $(\frac{27}{12})$ ft = 2.25 ft $V = LWH = (115 \text{ ft})(280 \text{ ft})(2.25 \text{ ft}) = 72,450 \text{ cu ft} = (\frac{72,450}{27}) \text{ cu yd} \approx 2,683.33 \text{ cu yd}$
- 34. Total sq ft of land: A = LW = (2,640 ft)(2,640 ft) =Sq ft in circular part: $A = \pi r^2 \approx (3.14)(1,320 \text{ ft})(1,320 \text{ ft}) =$ Area not farmed
- Rate = $\frac{Portion}{Base}$ = $\frac{1,498,464 \text{ sq ft}}{6,969,600 \text{ sq ft}}$ = 0.2150 = **21.50%**
- **36.** 7,122 yd + 125 yd (to first hole) + $(17 \times 50 \text{ yd})$ + 125 yd (back to clubhouse) = 8,222 yd = $(\frac{8,222}{1,760})$ mi \approx **4.67 mi**

6,969,600 sq ft

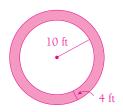
<u>-5,471,136</u> sq ft

1,498,464 sq ft

37. $V = LWH = (27 \text{ ft 6 in.})(18 \text{ ft})(4 \text{ in.}) \approx (27.5 \text{ ft})(18 \text{ ft})(\frac{1}{3} \text{ ft}) = 165 \text{ cu ft} = (\frac{165}{27}) \text{ cu yd} \approx 6.1111111111 \text{ cu yd}$ 6.111111111 cu yd × \$85 per cu yd = \$519.44

Top and bottom: $2(6 \text{ ft} \times 4 \text{ ft})$ 48 sq ft Front and back: $2(6 \text{ ft} \times 3 \text{ ft})$ 36 sq ft Two ends: $2(4 \text{ ft} \times 3 \text{ ft})$ $\underline{+24}$ sq ft Total 108 sq ft

39. $100 \text{ yds} = (100 \div 1,760) \text{ mi} \approx .05681818 \text{ mi}$ $10.5 \text{ sec} = (10.5 \div 60) \text{ min} = .175 \text{ min} = (.175 \div 60) \text{ hr} \approx .00291667 \text{ hr}$ miles per hour means miles \div number of hours, so: .05681818 mi \div .00291667 hr \approx 19.5 mph


40. A = LW Formula for area of rectangle 452 = L(24) Substitute: W = 24 in. $\frac{452}{24} = L$ Divide both sides by 24 $18.83 \approx L$

Check answer: 18.83 in. × 24 in. ≈ 452 sq in.

Practice Test

- 1. P = 2(L + W) = 2(1,200 ft + 600 ft) = 2(1,800 ft) = 3,600 ft
- 2. $d = \frac{c}{\pi} \approx \frac{31.5 \text{ in.}}{3.14} \approx 10.03 \text{ in.}$
- 3. Rectangle: A = LW = (150 ft)(120 ft) = 18,000 sq ftTriangle: $A = \frac{1}{2}bh = \frac{1}{2}(80 \text{ ft})(150 \text{ ft}) = \frac{+6,000}{24,000 \text{ sq ft}}$ Total area 24,000 sq ft

4.

Entire circle: $A = \pi r^2 \approx 3.14(14 \text{ ft})(14 \text{ ft}) \approx$ 615.44 sq ft Inner circle: $A = \pi r^2 \approx 3.14(10 \text{ ft})(10 \text{ ft}) \approx$ 914.00 sq ft Net area 301.44 sq ft

- **5.** $V = LWH = (1,000 \text{ ft})(270 \text{ ft})(12 \text{ ft}) = 3,240,000 \text{ cu ft} = (\frac{3,240,000}{27}) \text{ cu yd} = 120,000 \text{ cu yd}$
- 6. $V = \pi r^2 h \approx 3.14(12 \text{ ft})(12 \text{ ft})(45 \text{ ft}) \approx 20,347.20 \text{ cu ft}$
- 7. Cost per sq ft = $\frac{\text{Cost}}{\text{Number of sq ft}} = \frac{\$242,000}{2,320 \text{ sq ft}} = \104.31 per sq ft (Yes, it is within range.)
- **8.** $A = LW = (1,320 \text{ ft})(660 \text{ ft}) = 871,200 \text{ sq ft} = (\frac{871,200}{43,560}) \text{ acres} = 20 \text{ acres}$

Chapter 24 Internationa Business Exchange Rates and Metrics

Unit 24.1 Monetary exchange rates: Significance in international business

- 1. False; a worldwide currency has never existed.
- **2.** $\$2,300 = (2,300 \times .76724) = 1,764.65$ euros
- 3. $\$2,300 = (2,300 \times .64350) = 1,480.05$ pounds
- 4. $\$2,300 = (2,300 \times 77.7661) = 178,862.03 \text{ yen}$

- **5.** 21,300 Canadian dollars = $\frac{21,300}{1.03914}$ U.S. dollars = \$20,497.72
- **6.** 975,000 British pounds = $\frac{975,000}{64350}$ U.S. dollars = \$1,515,151.52
- 7. 65 Swiss francs = $\frac{65}{.93703}$ U.S. dollars = \$69.37
- 8. $$128,000 = (128,000 \times 1.5247)$ francs = 195,161.60 francs
- **9.** 195,161.60 Swiss francs = $\frac{195,161.60}{1.3822}$ U.S. dollars = \$141,196.35
- **10.** 195,161.60 Swiss francs = $\frac{195,161.60}{1.6744}$ U.S. dollars = \$116,556.14
- 11. True
- 12. False
- **13.** 5,300,000 Canadian dollars = $\frac{5,300,000}{1.0510}$ U.S. dollars = \$5,042,816.37
- **14.** 5,500,000 Canadian dollars = $\frac{5,500,000}{1.1587}$ U.S. dollars = \$4,746,698.89
- 15. Sold for \$4,746,698.89
 Purchased for -5,042,816.37
 Loss (\$296,117.48)

Unit 24.2 Metric system: Significance in international business

- 16. False
- 17. 200 g; a raisin weighs about 1 g
- 18. 2 m; a meter is a bit more than a yard
- 19. 650 km
- 20. 650; a liter is a bit more than a quart

21. 112 km
Abbreviation for prefix (kilo) Abbreviation for base unit (meter)

22. 25 mg
Abbreviation for prefix (milli) Abbreviation for base unit (gram)

23. 82 0
There is no prefix Abbreviation for base unit (liter)

- **24. cm**. mm is the abbreviation for millimeter and means $\frac{1}{1,000}$ of a meter; cm is the abbreviation for centimeter and means $\frac{1}{100}$ of a meter.
- 25. km. km is the abbreviation for kilometer and means 1,000 meters; m has no prefix and simply means 1 meter.
- **26.** kg. cg is the abbreviation for centigram and means $\frac{1}{100}$ of a gram; kg means 1,000 grams
- **27.** Start at milli on the line indicator of Illustration 24-3. Move to centi (1 place to the left). Move the decimal point 1 place to the left: 850 mm = 850 mm = 85 cm
- 28. Start at hecto on the line indicator. Move to centi (4 places to the right). Move the decimal point 4 places to the right: 12 hg = 12.0000 hg = 120,000 cg
- **29.** Start at milli on the line indicator. Move to base unit (3 places to the left). Move the decimal point 3 places to the left: 1,300 m = 1,300 m = 1.300 m
- 30. We will convert from kg to lb (see left side of the Weight section of Ill. 24-4): $24 \text{ kg} \approx (24 \times 2.2046) \text{ lb} \approx 52.91 \text{ lb}$
- 31. We will convert from m to yd (see left side of the Distance section): $100 \text{ m} \approx (100 \times 1.09361) \text{ yd} \approx 109.36 \text{ yd}$
- 32. We will convert from \emptyset to gal (see left side of the Volume section): $62 \, \emptyset \approx (62 \times .26417762)$ gal ≈ 16.38 gal
- 33. We will convert from in. to cm (see right side of Distance section): 17.5 in. $\approx (17.5 \times 2.54)$ cm ≈ 44.45 cm

- 34. We will convert from yd³ to m³ (see right side of Volume section): $38 \text{ yd}^3 \approx (38 \times .76456) \text{ m}^3 \approx 29.05 \text{ m}^3$
- 35. We will convert from oz to g (see right side of Weight section): $14.2 \text{ oz} \approx (14.2 \times 28.3495) \text{ g} \approx 402.56 \text{ g}$
- **36.** Illustration 24-4 gives the choice of converting from in. to (a) cm or (b) m. Converting to meters will result in a value less than 1; it will be much more meaningful to convert to centimeters:

8.5 in.
$$\approx (8.5 \times 2.54)$$
 cm ≈ 21.59 cm 11 in. $\approx (11 \times 2.54)$ cm ≈ 27.94 cm

- 37. 60 oz \approx (60 \times 28.3495) g \approx 1,701 g
- **38.** To compare the temperatures, we must state both using the same scale. Let's convert the Fahrenheit temperature (95°) to a Celsius (C) temperature

$$C = \frac{5}{9}(F - 32) = \frac{5}{9}(95 - 32) = \frac{5}{9}(63) = 35^{\circ}C$$

The temperature in Rome (38°C) was higher than that of Chicago (35°C).

39.
$$C = \frac{5}{9}(F - 32) = \frac{5}{9}(98.6 - 32) = \frac{5}{9}(66.6) = 37^{\circ}C$$

40.
$$C = \frac{5}{9}(F - 32) = \frac{5}{9}(-60 - 32) = \frac{5}{9}(-92) \approx -51.1$$
°C

Challenge problems

- **41.** 15 T \approx (15 \times .9072) t \approx **13.608** t
- **42.** 975 British pounds = $\left(\frac{975}{62570}\right)$ U.S. dollars = \$1,558.25
- **43.** 13.608 (t) \times \$1,558.25 (per t) = **\$21,204.67**
- **44.** 83 cm = .83 m 1.6 m + 2.5 m + .83 m + 4.7 m = 9.63 m
- **45.** 483 km ≈ (483 × .62137) mi ≈ 300 mi ⇒ 50 mph = **6** hr
- **46.** Cost in U.S. dollars for one liter: 1.40 Canadian dollars = $\left(\frac{1.40}{1.05}\right)$ U.S. dollars $\approx 1.33333333 1 liter $\approx (1 \times .26417762)$ gal $\approx .26417762$ gal Price per gallon means price \div gallons: $\frac{$1.33333333}{26417762} \approx 5.05 per gallon
- **47.** Let's determine how many meters per second for each record. Meters per second means the number of meters divided by the number of seconds.

Washington High School

 $\frac{100 \text{ m}}{10.94 \text{ sec.}} \approx 9.14 \text{ m}$ per sec. For each second, the runner traveled 9.14 m.

Lincoln High School

100 yd
$$\approx$$
 (100 \times .9144) m \approx 91.44 m

 $\frac{91.44 \text{ m}}{10.03 \text{ sec.}} \approx 9.12 \text{ m}$ per sec. For each second, the runner traveled 9.12 m.

The Washington High School recordholder ran the fastest.

Practice Test

84

- 1. $$38,000 = (38,000 \times 10.2350)$ pesos = 388,930 pesos
- 2. Sold for: 7,500,000 British pounds = $\left(\frac{7,500,000}{.71450}\right)$ U.S. dollars = \$10,496,850.94 Purchased for: 6,800,000 British pounds = $\left(\frac{6,800,000}{.65320}\right)$ US dollars = $\frac{-10,410,287.81}{.65320}$ Profit \$86,563.13
- **3. 25** km **4.** 1.05 mg = 001.05 mg = .00105 g
- **5.** 12.5 oz \approx (12.5 \times 28.3495) g \approx **354** g **6.** $F = \frac{9}{5}C + 32 = \frac{9}{5}(30) + 32 = 54 + 32 = 86$ °F

Chapter 25 Statistics An Introduction

Unit 25.1 The three Ms: Mean, median, and mode

- 1. $\frac{79 + 87 + 94 + 67 + 92 + 94 + 82}{7} = \frac{595}{7} = 85$
- 2. Values, high to low: 94, 94, 92, 87, 82, 79, 67

Midpoint =
$$\frac{\text{Number of values} + 1}{2} = \frac{7+1}{2} = \frac{8}{2} = 4$$

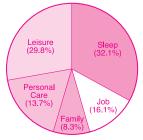
- 3. The value "94" occurs the most often (twice), so it is the mode.
- $4. \quad \frac{\$125,000 + \$115,000 + \$195,000 + \$88,000 + \$150,000 + \$135,000 + \$135,000 + \$245,000 + \$110,000 + \$165,000 + \$88,000 + \$665,000 + \$145,000}{12} = \frac{\$2,226,000}{12} = \$185,500$
- 5. Values, high to low: \$665,000, \$245,000, \$195,000, \$165,000, \$150,000, \$145,000, \$135,000, \$125,000, \$115,000, \$110,000, \$88,000

Midpoint =
$$\frac{\text{Number of values} + 1}{2} = \frac{12 + 1}{2} = \frac{13}{2} = 6.5$$
 (\$145,000 + \$135,000) ÷ 2 = \$140,000

- **6.** The value "\$88,000" occurs the most often (twice).
- **7. The median**. The mean (\$185,500) is distorted by the unusually large value of \$665,000. The mode (\$88,000) happens to be the lowest value. Neither the mean nor mode represents the average value. The median (\$140,000) best reflects the average selling price.
- 8. $\frac{\$4,700 + \$5,900 + \$6,800 + \$8,700}{4} = \frac{\$26,100}{4} = \$6,525$
- 9. $\$4,700 \times 8$ \$37,600 $\$5,900 \times 13$ 76,700 $\$6,800 \times 11$ 74,800 $\$8,700 \times \underline{5}$ $\underline{43,500}$ 37 $\$232,600 \div 37 = \$6,286.49$
- 10. Grade Hours Grade-point units Course B+ $3.3 \times 5 =$ Accounting 16.50 3 $2.7 \times 3 =$ В-8.10 Computer Science 1 Golf A $4.0 \times 1 =$ 4.00 Management $3.7 \times 3 =$ 11.10 12 $39.70 \div 12 = 3.31$ (about a B+ average)

Unit 25.2 Graphs: Presenting data so it is easy to understand

11. Revenues, Rocky Mountain River Expeditions


12. Revenues, Rocky Mountain River Expeditions

- 13. Nile. The end of the horizontal bar for the Nile entends farther to the right than the bars for the other rivers.
- 14. About 3,900 mi.
- **15.** 4,150 mi (Nile) 3,850 (Mississippi-Missouri) = **about 300 mi**

16.	Department	Percei	nt of total	Degrees	
	Sleep	54 ÷ 168 ≈	≈ .321 ≈ 32.1%	× 360° ≈	115.7°
	Job	27 ÷ 168 ≈	≈ .161 ≈ 16.1%	× 360° ≈	57.9°
	Family care	14 ÷ 168 ≈	≈ .083 ≈ 8.3%	× 360° =	30.0°
	Personal care	23 ÷ 168 ≈	≈ .137 ≈ 13.7%	× 360° ≈	49.3°
	Leisure	<u>50</u> ÷ 168 ≈	≈ .298 ≈ <u>29.8%</u>	× 360° ≈	107.1°
		168	100.0%		360.0°

17.

Percent of time spent for various activities

18. Weekly car sales, by price range

Value range **Tallies** \$0-\$2,999.99 \$3,000-\$5,999.99 1111 \$6,000-\$8,999.99 144 \$9,000-\$11,999.99 Ш \$12,000-\$14,999.99 Ш

- 19. c. The line on graph c is the flattest; the graphs of a and b have a steeper downward trend.
- **20.** \$4,000 to \$5,999.99 (10 cars)
 - 21. 7 cars
- 22. 3 cars

Unit 25.3 Measures of dispersion

- 23. Range = highest value lowest value = 14 hours 1 hour = 13 hours
- Mean = $\frac{5+7+1+14+8}{5} = \frac{35}{5} = 7$ hours

Step 2	Step 3		
(Subtract Mean)	(Square the result)		
5 - 7 = -2	(-2)(-2) = 4		
7 - 7 = 0	(0)(0) = 0		
1 - 7 = -6	(-6)(-6) = 36		
14 - 7 = 7	(7)(7) = 49		
8 - 7 = 1	(1)(1) = 1		

Step 4 (add squared deviations): 4 + 0 + 36 + 49 + 1 = 90

Step 5 (divide by *n***):** $90 \div 5 = 18$

Step 6 (square root): The square root of 18 is 4.24. The standard deviation for the 5 students is 4.24.

25. We will be treating the 5 students as a sample study and finding the standard deviation for a sample study. Steps 1-4 are identical to those of Problem 24, so let's start with Step 4:

Step 4 (add squared deviations): 90

Step 5 (divide by *n* **- 1):** $90 \div 4 = 22.50$

Step 6 (square root): The square root of 22.50 is 4.74. The standard deviation for the entire class, based on your sample study of 5 classmates, is 4.74.

26. Your savings account balance at the end of May was \$400. You made a \$225 deposit on June 5 and withdrew \$150 on June 28. Calculate your average (mean) daily balance for June.

27. Your test scores so far are 84, 93, 87, 94, and 88. What score do you need on your last test to end up with an average (mean) score of 90?

Total points required to have an average of 90: 6 tests × 90	540
Points so far: 84 + 93 + 87 + 94 + 88	<u>-446</u>
Points needed on last test	94

28. Prior cumulative grade-point units: 2.92×42 hrs

Grade-point units for this semester (see Problem 10)

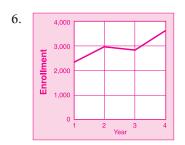
Cumulative grade-point units for all 54 hrs

122.64 ± 39.70 162.34 \div 54 = 3.01

Practice Test

1. $\frac{\$120,000 + \$140,000 + \$210,000 + \$178,000 + \$2,400,000 + \$120,000}{6} = \frac{\$3,168,000}{6} = \$528,000$

2. Values, high to low: \$2,400,000, \$210,000, \$178,000, \$140,000, \$120,000


Midpoint =
$$\frac{\text{Number of values} + 1}{2} = \frac{6+1}{2} = \frac{7}{2} = 3.5$$
 (\$178,000 + \$140,000) ÷ 2 = \$159,000

3. \$120,000 occurs the most often (twice)

4. The median. The mean (\$528,000) is distorted by the \$2,400,000 sale. The mode (\$120,000) happens to be the lowest value.

5.	Model	Price	Number sold
	Workmaster	\$550	52
	Auto-Feed	\$850	18
	Deluxe	\$2,300	6

Value		Frequenc	y	Product	
\$550	×	52	=	\$28,600	
\$850	×	18	=	15,300	
\$2,300	×	<u>6</u>	=	13,800	
		76		\$57,700 ÷ 7	76 = \$759.21

7.	Model	Number sold
	4 × 7	252
	5 × 8	144
	10 × 12	211
	12 × 15	128

Total number sold: 252 + 144 + 211 + 128 = 735 $211 \div 735 \approx .287$; $.287 \times 360^{\circ} \approx 103.3^{\circ}$

8. Step 1 Mean =
$$\frac{45 + 38 + 42 + 51}{4}$$
 = $\frac{176}{4}$ = 44 yards

Step 2	Step 3	
(Subtract Mean)	(Square the result)	
45 - 44 = 1	(1)(1) = 1	
38 - 44 = -6	(-6)(-6) = 36	
42 - 44 = -2	(-2)(-2) = 4	
51 - 44 = 7	(7)(7) = 49	

Step 4 (add squared deviations): 1 + 36 + 4 + 49 = 90

Step 5 (divide by n - 1): 90 ÷ 3 = 30

Step 6 (square root): The square root of 30 is **5.48**. If you were to throw a football as far as you can 50 times, you could expect to average 5.48 yards more, or 5.48 yards less, than the average distance of 44 yards.